2018 Progress for applying genomic tools to accelerate breeding for disease resistance in confection sunflower

Guojia Ma¹, Xuehui Li¹, Lili Qi²

¹NDSU – Plant Sciences, Fargo, ND

²USDA-ARS, NCSL, Fargo, ND

NSA Research Forum 01-10-2019

Outline

- Background knowledge (DM, Pl₁₇, Pl₁₉, etc.)
- Research objectives
- Research progress
 - Fine mapping of DM *R*-genes *Pl*₁₇ and *Pl*₁₉
 - Development of diagnostic markers for Pl₁₇ and Pl₁₉
 - > Analysis of candidate gene of PI_{17}
- Future work
- Acknowledgements

Downy mildew

(Photo by Markell and Gong)

- Plasmopara halstedii
- Incidence: 16% of 2015 and 9% of 2017 (NSA surveys)
- Development of resistant hybrids is most effective management tool (economic & environmental)

DM threats sunflower production

- New DM races are emerging, making current DM *R*-genes ineffective
- Potential threat to sunflower production
 ➤ Gilley (2014-2015) identified only five *R*-genes
 [*Pl_{Arg}*, *Pl₁₅*, *Pl₁₇*, *Pl₁₈*, and TX16R (*Pl₃₃*, recently
 published)] were resistant to 185 DM isolates
 collected in ND, SD, MN, NE
- New DM *R*-gene is continuously needed (*Pl*₁₉, *Pl*₂₀, and more)

DM *R*-genes *Pl*₁₇ and *Pl*₁₉

	PI ₁₇	PI ₁₉	
Publication	Qi et al., 2015	Zhang et al., 2017	
Resistant line	HA 458	HA-DM5	
Chro. location	LG4	LG4	
Resistance to all U.S. races	Yes	Yes	
Confectionary	Yes (HA-DM3)	Yes (HA-DM5)	

- Broad-spectrum and new resistance
- Long-term mission: making the *R*-genes easier to use (breederfriendly markers)
 - Closer markers (best would be in *R*-gene itself)
 - More unique markers

Positions of PI_{17} and PI_{19}

Research objectives 2017-2019

- Analyze allelic relationships of the two new DM *R*-genes, *Pl*₁₇ and *Pl*₁₉
- Conduct high-resolution genetic and physical mapping of Pl₁₇, Pl₁₉, and Pl₁₈ (LG2)
- Identify candidate genes of DM resistance
- Develop user-friendly markers of these DM *R*-genes

Research objectives 2018

- Analyze allelic relationships of the two new DM R-genes, *Pl*₁₇ and *Pl*₁₉
- Conduct high-resolution genetic and physical mapping of Pl₁₇, Pl₁₉, and Pl₁₈ (LG2)
- Identify candidate genes of DM resistance
- Develop user-friendly markers of these DM *R*-genes

Fine mapping of *Pl*₁₇

- 22 recombinants were detected from large F₂ pop (3,008 plants) with two flanking markers
- F₃ phenotyping
- HA 458 whole genome resequencing data (40x coverage) *vs*. references XRQ and HA 412-HO
- Single nucleotide polymorphism (SNP) identification and primer design

Development of *Pl*₁₇ diagnostic markers

- 7 SNP markers are unique to Pl₁₇, and different from Pl₁₉
- 6 markers could differentiate Pl₁₇ from 96 selected sunflower lines, will be useful in MAS

Candidate *Pl*₁₇gene identification

- *Pl*₁₇ candidate gene: HanXRQChr04g0095641 in XRQ genome
- Belongs to TIR-NBS-LRR (typical for *R* gene) class with 32.329 kb
- 16 polymorphic markers fall in the region
- Working on gene sequence retrieval and correction, and functional analysis

Fine mapping of *Pl*₁₉

- 23 recombinants were detected from large F₂ pop (2,256 plants) with two flanking markers
- F₃ phenotyping
- HA-DM5 whole genome resequencing data (40x coverage) *vs*. references XRQ and HA 412-HO
- Single nucleotide polymorphism (SNP) identification and primer design

Outcome: 52 SNP markers were mapped around Pl₁₉, and Pl₁₉ was placed in 36 kb interval of XRQ assembly (1.12% of initial 3.2 Mb)

	From XRQ	From HA 412-HO	Total
Designed markers	168	104	272
Polymorphic markers	47	5	52

Development of *Pl*₁₉ diagnostic markers

- 19 SNP markers are unique to Pl₁₉, and different from Pl₁₇
- 9 markers could differentiate Pl₁₉ from 96 selected sunflower lines, will be useful in MAS

C04_6676629 marker

Future work (2019)

- *Pl*₁₇ and *Pl*₁₉ fine mapping are complete, and will work on manuscript writing
- Candidate gene of *Pl*₁₉ identification
- HA-DM1 (*Pl*₁₈) whole genome has been sequenced, and currently working on the fine mapping and diagnostic marker development
- Candidate *Pl*₁₈ gene identification

Acknowledgements

- Angelia Hogness (USDA-ARS, NCSL)
- Dr. Qijian Song (USDA-ARS, BARC)
- Dr. Zahirul Talukder (NDSU/USDA-ARS, NCSL)
- Dr. William Underwood (USDA-ARS, NCSL)
- Dr. Jason Fiedler (USDA-ARS)
- Dr. Loren Rieseberg (UBC)
- Dr. Sariel Hübner (MIGAL Institute, Israel)

Financial Support

- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS through ND Department of Agriculture

