QUALITY AND USE OF SUNFLOWER OIL AND SUNFLOWER WAX IN THE FOOD INDUSTRY

Jill K. Winkler-Moser, Hong-Sik Hwang, Sean X. Liu

USDA, ARS, Functional Foods Research Unit

NCAUR, Peoria, IL

National Center for Agricultural Utilization Research

- Research Units
 - Bacterial Foodborne Pathogens
 - Bioenergy
 - Bio-oils
 - Crop Bioprotection
 - Functional Foods Research
 - Plant Polymer
 - Renewable Product Technologies

1950

2013

https://www.ars.usda.gov/midwest-area/peoria-il/national-center-for-agriculturalutilization-research/

Improving Quality, Stability, and Functionality of Oils and Bioactive Lipids

Project # 5010-44000-052-00D USDA-Agricultural Research Service National Center for Agricultural Utilization Research

Research to

improve oils-

From the field to

the kitchen table/

Project Objectives

 Increase the value of edible oils produced in the U.S. through the <u>development of technologies to replace</u> <u>trans fats and saturated fats</u> while overcoming stability and functionality shortcomings

 Increase the value-added potential of agricultural and food processing coproducts through <u>discovery of</u> <u>bioactive ingredients and antioxidants</u>

Outline

- •Edible oils in the U.S.
- Stability and functionality of edible oils
- Research on sunflower oil and sunflower wax

Production and Import of Edible Oils and Fats in the U.S.

Why are alternatives to lipid structuring needed?

- 2006: FDA requires food companies to label the content of trans-fatty acids
 - Food industry responded by replacing partially hydrogenated oils with palm oil and palm kernel oil (saturated fat)
- 2013: FDA releases preliminary ruling that hydrogenated oils containing trans fatty acids would not longer be considered GRAS (Generally Recognized as Safe)
- 2018: U.S. food industry required to phase out all partially hydrogenated oils
- Goal: zero trans fats, low saturated fats

Impact of quality improvements: Production, Consumption, and Price of Sunflower oil

Fatty acid composition of common vegetable oils and effect on healthfulness, stability and functionality

	<u>Healthfulness</u>	<u>Stability</u> to oxidation or frying	Functionality
Saturated	*	$\star\star\star\star$	$\star\star\star$
Trans-unsaturated	%	$\star\star$	$\star\star\star$
Monounsaturated	$\star\star\star$	$\star\star$	$\star \star$
Polyunsaturated	$\star\star\star$	*	*

Advantages of Sunflower Oil

- •Mid-to-high levels of oleic acid
- •Low in saturated fats (< 10 %)
- •Zero trans fats
- •High in Vitamin E (alpha tocopherol)

- •High stability
 - •Frying oil
 - Salad oil
 - Long shelf-life
- •High smoke point
 - •Frying
- Neutral flavor
- •Non-GMO
 - Organic
 - •Expeller pressed

Tocopherol profile

Effect of different tocopherols on stability of mid-oleic sunflower oil during frying

Vitamin E: Tocopherol and tocotrienol structures

J Am Oil Chem Soc (2009) 86:1199–1207

ORIGINAL PAPER

Oxidative Stability of Crude Mid-Oleic Sunflower Oils from Seeds with High γ - and δ -Tocopherol Levels

K. Warner · Jerry Miller · Y. Demurin

Table	2 Tocopherol	compositions	(ppm)	of	extracted	crude	sun-
flower	oils						

	Alpha	Beta	Gamma	Delta
Set 1				
Mid-oleic	\frown		\frown	
А	393 a	82 a	333 a	64 a
В	356 b	78 a	364 b	68 a
С	289 9	56 b	472 g	95 b
D	69 d	24 c	680 d	221 c
E	33 e	12 d	656 d	188 d
Control 1	909 f	34 e	18 e	3 e
Set 2				
High-oleic				
F	365 a	109 a	391 a	120 a
G	512 b	79 b	223 b	42 b
Н	44 c	8 c	678 c	140 c
J	52 c	9 c	558 d	135 c
Κ	308 d	47 d	522 e	121 a
Control 2	779 e	34 e	10 f	2 d

Addressing functionality

- Saturated and/or trans fats (straight chains) are needed for higher melting point (fat *vs* oil)
 - Blending with fats
 - Interesterification (blend and move fatty acids around)
 - Development of new breeds higher in saturates

Sunflower Oil Fatty Acid Profile

Oleogel approach: How can liquid oils be turned into semi-solids for replacement of *trans* and saturated fats?

- Organogels¹
 - <10% w/w molecular weight gelator
 - Phytosterols + oryzanol, waxes, hydrocarbons, fatty acids, hydroxy fatty acids, ethylcellulose, monoglycerides
 - Crystallizes upon cooling
 - Forms thermo-reversible network to entrap large volumes of liquid oil
- "Oleogels"-specifically using edible oils

¹Blake and Marangoni, Food Biophysics, 2015, 10:403-415

Sunflower wax

- Mainly from seed hull (2-2.5%)
- Oil wax content 0.02% 0.35 %
- Removed by winterization
 - Clear oil, no turbidity
- Purified wax
 - Long chain wax esters

- Waxes: history of use in food in coatings & confectionary ingredients, as well as in cosmetics
 - Approved food additives
 - GRAS

Images from AOCS Lipid Library (lipidlibrary.aocs.org)

Wax based organogels

Wax type	Composition (1)	Melting point	Minimum gelation (2)
Rice bran	WE(94%), FFA (6%)	82	0.5-5%
Sunflower	96% WE 3% FFA	77	0.5%
Beeswax	58% WE 27% HC 9% FFA 6% FAL	64	2-3%
Candelilla	73% HC 16% WE 10% FFA 2% FAL	65	1-2%

- 1. Doan et al.(2017) Food Chemistry 214:717-725
- 2. Hwang et al. (2012) J. Amer. Oil Chem. Soc. 89: 639-647

Properties of wax organogels¹

- Minimum gelation levels
 - 0.5-5% w/w
 - Wax type
 - Purity
 - Oil
- Increased melting point with ↑ wax
 %
- Increased firmness with ↑ wax %
- Decreased crystal size with cooling rate
 - Increased firmness
 - Denser networks

- Sunflower wax
 - Thin, plate-like crystals
- Products made with wax oleogels
 - Spreads (soft margarine)
 - Shortening/margarine replacement in cookies, cakes

5% sunflower wax in SBO with fast cooling, from reference 4 on last slide

References listed on last slide

Example: Peanut butter

- Hydrogenated oils or palm oil are added to peanut butter to bind excess oil and to improve texture and spreadability
- Four waxes studied for oil binding capacity and texture analysis in peanut butter
 - Beeswax
 - Candelilla wax
 - Rice bran wax
 - Sunflower wax
 - Hydrogenated cottonseed oil –control/reference

Oil binding in peanut butter

Sunflower wax had the best oil binding property, was not significanntly different from the control

% Wax within Wax type

• Measured firmness was higher with sunflower wax and rice bran wax, similar to the control

Sensory Panel: Appearance & Spreadability

Sunflower wax and rice bran wax were less 'oily' in appearance

Sunflower wax and rice bran wax had increased spreadability (Skippy)

Challenges and Opportunities

- Excellent oil binding capacity
 - Networks (sunflower, rice bran) do not recover after stirring
 - Interaction with food ingredients
- Sharp melting curve
- High melting point- waxy mouthfeel
- Hydrocarbons and other wax components may have off-flavors of their own
- Residual oil off-flavors/odors-minimize levels
- Availability
- $\bullet \rightarrow Minimize wax concentrations$
- Opportunities-broaden the physical properties and profiles of waxbased oleogels by combining waxes

Conclusions

- Sunflower oil with increased oleic acid content (NuSun, high oleic) are premium oils for use in the food industry
- New sunflower varieties with altered tocopherol profiles may have improved oxidative stability
 - Frying
- Sunflower wax may be a promising new ingredient for improving functional properties of oils without adding saturated and trans fats.

References not provided on slides

(1) Hwang, H. S.; Kim, S.; Singh, M.; Winkler-Moser, J. K.; Liu, S. X., Organogel formation of soybean oil with waxes. JAOCS, Journal of the American Oil Chemists' Society **2012**, 89, 639-647.

(2) Hwang, H. S.; Singh, M.; Bakota, E. L.; Winkler-Moser, J. K.; Kim, S.; Liu, S. X., Margarine from organogels of plant wax and soybean oil. *JAOCS, Journal of the American Oil Chemists' Society* **2013**, *90*, 1705-1712.

(3) Hwang, H. S.; Singh, M.; Winkler-Moser, J. K.; Bakota, E. L.; Liu, S. X., Preparation of margarines from organogels of sunflower wax and vegetable oils. *J. Food Sci.* **2014,** *7*9, C1926-C1932.

(4) Hwang, H. S.; Kim, S.; Evans, K. O.; Koga, C.; Lee, Y., Morphology and networks of sunflower wax crystals in soybean oil organogel. *Food Structure* **2015**, *5*, 10-20.

(5) Hwang, H. S.; Singh, M.; Lee, S., Properties of Cookies Made with Natural Wax-Vegetable Oil Organogels. *J. Food Sci.* **2016**, *81*, C1045-C1054.

(6) Jang, A.; Bae, W.; Hwang, H. S.; Lee, H. G.; Lee, S., Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. *Food Chem.* **2015**, *187*, 525-539.

(7) Kim, J. Y.; Lim, J.; Lee, J.; Hwang, H. S.; Lee, S., Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. *J. Food Sci.* **2017**, *82*, 445-452.

(8) Lim, J.; Hwang, H. S.; Lee, S., Oil-structuring characterization of natural waxes in canola oil oleogels: rheological, thermal, and oxidative properties. *Applied Biological Chemistry* **2017**, *60*, 17-22.