2017 Progress for applying genomic tools to accelerate breeding for disease resistance in confection sunflower

Guojia Ma^{1,2}, Samuel Markell¹, Lili Qi² ¹NDSU – Plant Pathology, Fargo, ND ²USDA, ARS, NCSL, Fargo, ND

NSA Research Forum 01-11-2018

Outline

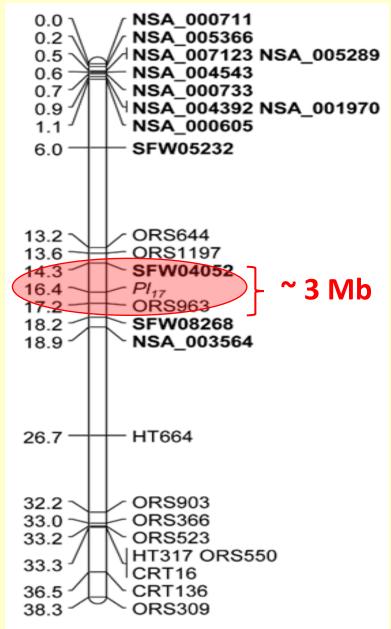
- Background knowledge (DM, Pl₁₇, Pl₁₉, etc.)
- Research objectives
- Research progress
 - Allelic test of Pl₁₇ and Pl₁₉
 - Fine Mapping of DM *R*-gene *Pl*₁₇
 - Saturation mapping of DM R-gene Pl₁₉
- Future work
- Acknowledgements

Downy mildew

(Photo by Markell and Gong)

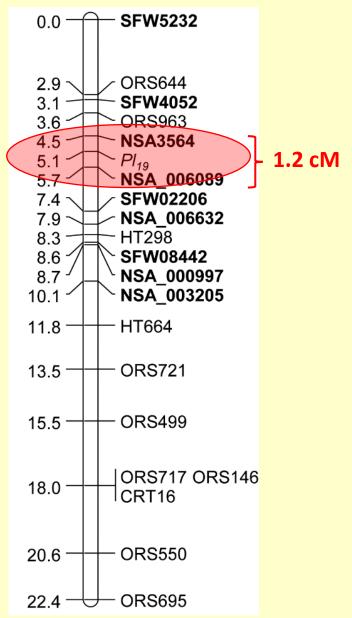
Plasmopara halstedii

>15% infection in US (2013 and 2015 NSA surveys)

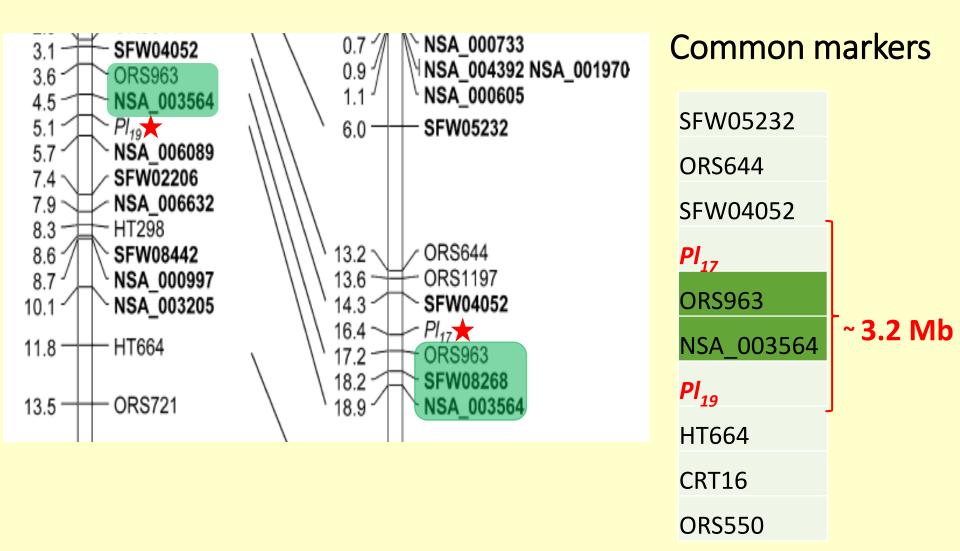

Development of resistant hybrids is most effective management tool (economic & environmental)

DM threats sunflower production

- New DM races are emerging, making current DM *R*-genes ineffective
- Potential threat to sunflower production
 - $> Pl_6$ was overcome by six new DM races in France 2000-2008
 - $> Pl_6$ was first reported to be overcome by race 734 in U.S. in 2009
 - > Pl₆ and Pl₇ were overcome by five DM races in U.S. by 2010
 - $> PI_{15}$ was overcome in Argentina in 2013
 - Gilley (2014-2015) identified only five *R*-genes [*Pl_{Arg}*, *Pl₁₅*, *Pl₁₇*, *Pl₁₈*, and TX16R (unknown)] were resistant to 185 DM isolates collected in ND, SD, MN, NE
- New DM *R*-gene is continuously needed (*Pl*₁₉, *Pl*₂₀, and more)


DM *R*-gene *Pl*₁₇

- Qi et al., Theor. Appl. Genet.
 (2015) 128:757-767
- Identified from HA 458 (USDA inbred line)
- Mapped to LG4 of the sunflower genome (2.9 cM & 3 Mb interval)
- Resistant to all *P. halstedii* races in U.S.
- Transferred to confection sunflower – HA-DM3 (rust and DM resistance)



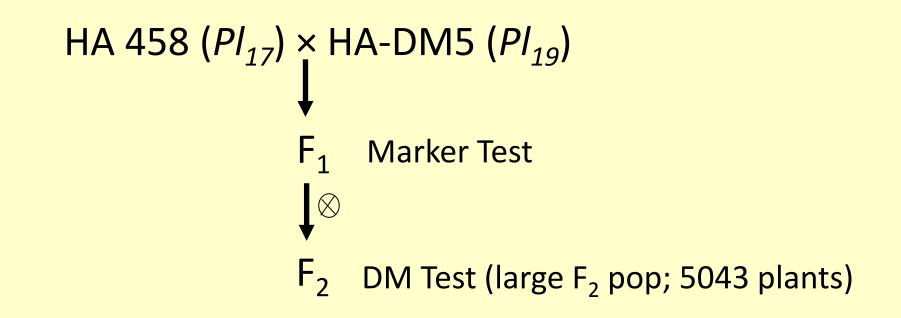
DM R-gene Pl₁₉

- Zhang et al., Theor. Appl. Genet. (2017) 130:29-39
- Identified from wild *Helianthus annuus* PI 435414
- Mapped to LG4 of the sunflower genome (1.2 cM interval)
- Resistant to all *P. halstedii* races in N.A.
- Introduced to confection sunflower – HA-DM5

Positions of *Pl*₁₇ and *Pl*₁₉

Why fine mapping of *Pl*₁₇ and *Pl*₁₉

- Broad-spectrum DM resistance
- Not used in commercial scale
- Long-term mission: making the *R*-genes easier to use (breeder-friendly markers)
 - Closer markers (best would be in *R*-gene itself)
 - More unique markers


Research objectives 2017-2019

- Analyze allelic relationships of the two new DM *R*-genes, *Pl*₁₇ and *Pl*₁₉
- Conduct high-resolution genetic and physical mapping of Pl₁₇, Pl₁₉, and Pl₁₈ (LG2)
- Identify candidate genes of DM resistance
- Develop user-friendly markers of these DM *R*-genes

Research objectives 2017-2019

- Analyze allelic relationships of the two new DM *R*-genes, *Pl*₁₇ and *Pl*₁₉
- Conduct high-resolution genetic and physical mapping of Pl₁₇, Pl₁₉, and Pl₁₈ (LG2)
- Identify candidate genes of DM resistance
- Develop user-friendly markers of these DM *R*-genes

Allelic test of *Pl*₁₇ and *Pl*₁₉

Outcome: No susceptible F₂ was detected, meaning there was no recombination event happened in this F₂ population

Saturation mapping of *Pl*₁₇

• STEP 1-sequence-based SSR marker development

- PI_{17} and PI_{19} was delimited to a 3.2 Mb region on LG4
- The sequence was extracted from reference genome of HA 412
- ➢ 94 pairs of primers (55 SSR & 39 STS) were designed from the sequence
- > Polymorphism screening between HA 234/HA 458 (PI_{17})
- Genotyped 186 F₂ individuals with 8 polymorphic markers

Outcome: 3.2 Mb interval reduced to 150 kb (95.3% reduction)

Saturation mapping of Pl_{17}

- STEP 2-sequence-based SNP marker development
 - HA 458 pan-genome sequence (10x coverage) was aligned with another reference genome XRQ around Pl₁₇ region
 - Single nucleotide polymorphism (SNP) was analyzed and 27 sets of primers (SPB0001-SPB0027) were designed
 - Outcome: Eight SNP markers were mapped adjacent to and below Pl₁₇ within the 150 kb region

Fine mapping of *Pl*₁₇

• STEP 3-fine mapping

A total of 3,008 F₂ plants were screened with two flanking markers, and 22 recombinants were detected

The recombinants were advanced to F₃ generation for further DM test

Genotyping of the new markers in the recombinant lines is underway, leading to increase of map resolution

Saturation mapping of Pl₁₉

- ➤ 150 pairs of primers (111 SSR & 39 STS) were designed from the 3.2 Mb sequences from the reference genome of both HA 412 and XRQ
- Polymorphism screening between CONFSCLB1/HA-DM5 (Pl₁₉)
- Genotyped 140 F₂ individuals with 24 polymorphic markers
- 13 markers were mapped upstream of the Pl₁₉ gene and one marker downstream of the Pl₁₉ gene

Outcome: 3.2 Mb interval reduced to 258 kb (91.9% reduction) in HA 412 69 kb (97.8% reduction) in XRQ

Future Work (2018)

- Further narrow down the interval of *Pl*₁₇ and *Pl*₁₉ region
- Identify closed and management of a single for breeding assistance

Mapping with two reference genomes

 Identify candidate DM R-genes and SNP and InDel detection
 functional analysis
 Fine mapping

Acknowledgements

- Dr. Qijian Song (USDA-ARS, BARC)
- Angelia Hogness (USDA-ARS, NCSL)
- Dr. Zahirul Talukder (NDSU/USDA-ARS, NCSL)
- Dr. William Underwood (USDA-ARS, NCSL)
- Dr. Loren Rieseberg (UBC)
- Dr. Sariel Hübner (MIGAL Institute, Israel)

Financial support

- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS through ND Department of Agriculture