Update on Transferring Sclerotinia Resistance Genes from Wild Helianthus Species into Cultivated Sunflower

Zhao Liu¹, Gerald J. Seiler², Xiwen Cai¹, Khalid Y. Rashid³, and Chao-Chien Jan² ¹Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA ²USDA–ARS, Northern Crop Science Laboratory, Fargo, ND 58102 USA ³Agriculture and Agri-Food Canada, Morden, Manitoba, R6M 1Y5 Canada

Abstract

With the aim to introgress Sclerotinia resistance genes from wild perennials into cultivated sunflower, crosses and backcrosses have been made between interspecific amphiploids, and perennials with cultivated sunflower. The backcross progenies with 2n=34 chromosomes derived from different crosses were evaluated in replicated trials in 2009-2016. In 2016, 75 families were tested for stalk rot at Carrington, ND and Staples, MN, and 45 families for head rot at Carrington, ND and Staples, MN. However, the stalk rot trials were not successful, so only the results of the head rot trials will be presented. Several families of the first or second retests and new selections had good resistance to head rot. Families with better resistance than the recurrent parents identified in the different trials will be retested in 2017. The pollen of the BC₁F₁s derived from *H. strumosus* and *H. tuberosus* (2n=51) was crossed to NMS HA 89 in 2016 to obtain more BC_2F_1 seeds. Previously produced BC_1F_1 seeds (2n=51) of four perennials crossed with HA 89 were planted in 2016, which were crossed with HA 410 and NMS HA 89, respectively with the BC_2F_1 seeds planted in the greenhouse. Seeds of more than 150 progeny families were field-increased. These materials will provide additional potential pools of resistance genes and increase the probability of identifying useful resistance QTLs. Crosses between seven Sclerotinia resistant sources and cultivated HA 234 were made in 2016 to develop the recombinant inbred line (RIL) populations for Sclerotinia resistance QTL mapping. Five resistant and six susceptible BC_4F_4/BC_4F_5 progenies derived from H. californicus were planted for further analyzing the alien fragments using genomic *in situ* hybridization (GISH) and genotyping by sequencing (GBS) techniques. Thirteen amphiploids derived from eight wild perennial species will be released as germplasms.

Table 2. Replicated Sclerotinia head rot field evaluation of 2015 new interspecific crosses (Test 5) at Carrington, ND, and Staples, MN in 2016.

Dedigroe*	Carrington, ND 2016		Staples, MN 2016	
Pedigree*	Disease Rating	Infected Plants	Disease Rating	Infected Plants
TEST 5 (New Selections)	0-5	%	0-5	%
[{OCC PI494594 x HA 410 ⁴ }(x) &/or x HA 89], BC4F3 (5085)	2.81	60	3.17	70
[{OCC PI494594 x HA 410 ⁵ }, x HA 89], BC4F2 (5086)	3.33	67	2.89	65
[{OCC PI494594 x HA 410 ⁵ }, x HA 89], BC4F2 (5087)	3.38	72	3.08	67
{(NMS HA89 x DIV) x HA 410^2 }, (x), BC2F4 (5090)	3.03	68	2.12	55
{(NMS HA89 x DIV) x HA 410^2 }, (x), BC2F4 (5091)	4.43	94	2.30	53
{(NMS HA89 x DIV), (x), BC2F4 (5092)	5.00	100	5.00	100
{(NMS HA89 x DIV), (x), BC2F4 (5093)	4.42	92	1.81	38
{(NMS HA89 x DIV) x HA 410^3 }, BC4F2 (5094)	4.18	88	2.93	63
{(NMS HA89 x DIV) x HA 410^3 }, BC4F2 (5095)	4.90	100	3.32	68
{(NMS HA89 x DIV) x HA 410^3 }, BC4F2 (5097)	4.21	88	4.32	89
{(NMS HA89 x DIV) x HA 410^3 }, BC4F2 (5098)	4.21	86	3.68	79
{(NMS HA89 x DIV) x HA 410^3 }, BC4F2 (5099)	4.75	100	4.17	83
{(NMS HA89 x DIV) x HA 410^3 }, BC4F2 (5100)	4.31	94	2.71	68
Recurrent parent HA 410	3.77	77	3.55	82
Checks				
Susceptible check HA 89 (S)	3.30	70	3.50	88
Susceptible check Cargill/Mycogen (270/272) (S)	2.43	57	3.18	64
Resistant check Croplan 305 (R)	1.67	33	2.45	60
Resistant check Croplan 343 (R)	0.69	23	0.22	6
*The first three letters of the <i>Helianthus</i> species are used to identify the species source: DIV=H. <i>divaricatus</i> ; and OCC= H. occidentalis.				
(S)= Susceptible; (R)=Resistant. The number in parenthesis at the end of each pedigree is the family ID of the selected family.				

Introduction

Sclerotinia, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, attacks sunflower (Helianthus annuus L.) causing root, stalk, and head rot, and is one of the most damaging and difficult-to-control sunflower diseases (Gulya, 2004). Many wild perennial Helianthus species have been confirmed to be highly resistant to this fungus (Block et al., 2011; Feng et al., 2007a, b). In the last 12 years, our lab has focused on the introgression of resistance genes from the wild perennial Helianthus species into cultivated sunflower, via the traditional backcross method (Liu et al. 2011, 2013, 2015). The objectives of this study were to: (1) identify resistant wild perennial Helianthus species populations and interspecific amphiploids; (2) transfer resistance genes into a cultivated background; and (3) study the inheritance of resistance.

Materials and Methods

1. Head rot resistance evaluation: Replicated field evaluations for 45 families of 2015 retests and new selections derived from Phase 1 and 2 crosses were conducted at Carrington, ND and Staples, MN in 2016. **2. Mitotic chromosome counts:** Conducted using the standard Feulgen staining method.

3. Seed increase and backcrosses: Seed of 152 backcross families derived from previous crosses were increased in the field in 2016. In the greenhouse, the pollen of the BC_1F_1s derived from *H. strumosus* and *H. tuberosus* (2n=51) was crossed to NMS HA 89 in 2016 to obtain more BC_2F_1 seeds. The BC_1F_1 plants (2n=51) of H. smithii, H. atrorubens, H. laevigatus, and H. pauciflorus (rigidus) with HA 89 were crossed with HA 410 and NMS HA 89, respectively.

4. QTL mapping population development: Crosses between seven Sclerotinia resistant sources and cultivated HA 234 were made in 2016.

2. QTL mapping populations development and entries from *H. californicus* for further characterization

Table 3. Crosses between seven Sclerotinia sources and cultivated HA 234 to develop RIL populations for Sclerotinia resistance QTL mapping.

Entry #	Source	Pedigree	Selfed/Sib seed set (%)	Crossed seed set (%)
HR21	09/4008	(NMS HA 89 x 1018 (MAX)) x HA 441 ³ , BC3F3	43.3	55
HR92	09/4041	(NMS HA 89 x 1008 (NUT)) x HA 441, BC1F5	65	56.7
SR24	09/4011	(NMS HA 89 x 1018 (MAX)) x HA 441 ³ , BC3F3	15	26.9
SR99	10/4144	(NMS HA 89 x 1008 (NUT)) x HA 441, BC1F4	55	67
SR279	11/4484	[(DIV(68) x GRO (68)) x HA 410 ³ , BC2F2] x HA 410, BC3F2	43	65
SR288	11/4489	[STR (68) x HA 410 ³ , BC2F2] x HA 410, BC3F2	51	55
SR216	09/4271	CAL 2376 x HA 410 ⁵ , BC4F4	-	20

Table 4. Five resistant and six susceptible entries to stalk rot (SR) derived from *H. californicus* (CAL) selected for further characterization by GISH and/or GBS techniques.

Entry #	Source	Pedigree	SR Score (%)	Selfed seed set (%)
28	09/4104	CAL 2376 x HA 410 ⁵ , BC4F4	0	25.00
216	10/4386	CAL 2376 x HA 410 ⁵ , BC4F4	0	67.5
235	11/4470	CAL 2376 x HA 410 ⁵ , BC4F4	0	61.25
258	11/4478	CAL 2376 x HA 410 ⁵ , BC4F4	0	27.54
304	09/4306	CAL 2376 x HA 410 ⁵ , BC4F4	0	18.33
29	09/4106	CAL 2376 x HA 410 ⁵ , BC4F4	8-63	40.00
30	09/4110	CAL 2376 x HA 410 ⁵ , BC4F4	0-67	41.25
32	09/4114	CAL 2376 x HA 410 ⁵ , BC4F4	0-56	45.00
41	09/4163	CAL 2376 x HA 410 ⁵ , BC4F5	0-50	47.50
228	11/4466	CAL 2376 x HA 410 ⁵ , BC4F4	33-45	34.21
317	11/4497	CAL 2376 x HA 410 ⁵ , BC4F5	7-46	72.50

Results

1. Sclerotinia head rot resistance evaluation of 2015 retests and new selections

Table 1. Replicated Sclerotinia head rot field evaluation of 2015 retest (Tests 2 and 3)

 and new interspecific crosses (Test 4) at Carrington, ND and Staples, MN in 2016.

	Carrington, ND 2016		Staples, MN 2016	
Pedigree*	Disease Rating	Infected Plants	Disease Rating	Infected Plants
TEST 2 (Second Retest)	0-5	%	0-5	%
((NMS HA 89 x GRO PI613793) HA 410*2), BC2F3 (47)	3.50	83	1.76	42
((NMS HA 89 x GRO PI613793) HA 410), BC2F3 (66)	1.83	38	1.94	44
((NMS HA 89 x GRO PI613793) HA 410), BC1F4 *new 69*	2.89	65	2.96	69
Recurrent parent HA 410	4.88	92	3.71	89
((NMS HA 89 x 1323(MAX) x HA 441), BC1F5 (7)	0.94	22	0.92	25
((NMS HA 89 x 1324(NUT) x HA 441), BC1F5 (8)	0.84	24	1.36	34
((NMS HA 89 x 1008 (NUT)) x HA 441) HA 441, BC2F4 (9)	2.54	59	1.32	33
((NMS HA 89 x 1018 (MAX)) x HA 441), BC1F6 (10)	1.34	37	0.93	20
((NMS HA 89 x1324 (NUT) x HA 441), BC1F5 (11)	1.13	40	0.37	11
((NMS HA 89 x 1008 (NUT)) x HA 441) HA 441), BC2F4 (15)	1.60	47	2.13	52
((NMS HA 89 x 1008 (NUT)) x HA 441) HA 441), BC2F4 (16)	2.58	55	1.82	54
Recurrent parent HA 441	1.39	42	2.15	57
TEST 3 (First Retest)				
NMS HA 89 x (SAL x HA 410), F2 (1011)	1.94	52	1.18	30
NMS HA 89 x (SAL x HA 410), F2 (1014)	2.20	51	1.61	43
NMS HA 89 x (SAL x HA 410), F2 (1063)	4.17	85	3.08	77
NMS HA 89 x (SAL x HA 410), F2 (1069)	3.89	84	2.26	58
NMS HA 89 x (SAL x HA 410), F2 (1072)	1.69	44	1.40	36
NMS HA 89 x (SAL x HA 410), F2 (1074)	2.23	51	2.50	53
NMS HA 89 x (SAL x HA 410), F2 (1077)	3.94	82	3.67	89
NMS HA 89 x (OCC x HA 410), F2 (1047)	1.74	40	1.91	43
NMS HA 89 X (OCC X HA 410), F2 (1085)	3.68	84	1.61	41
NMS HA 89 X (OCC X HA 410), F2 (1097)	3.50	73	2.60	56
NMS HA 89 X (OCC X HA 410), F2 (1098)	4.59	95	3.24	79
Recurrent parent HA 410		90	2.68	68
TEST 4 (New Selections)				
NMS HA 89 x (SAL x HA 410), F2 (1120)	2.59	47	1.90	44
NMS HA 89 x (SAL x HA 410), F2 (1121)	2.00	52	0.69	21
NMS HA 89 x (SAL x HA 410), F2 (1137)	4.05	86	2.97	71
NMS HA 89 x (SAL x HA 410), F2 (1138)	4.12	98	2.13	68
NMS HA 89 x (SAL x HA 410), F2 (1139)	4.25	85	2.19	54
NMS HA 89 x (OCC x HA 410), F2 (1163)	2.39	54	2.18	48
NMS HA 89 x (OCC x HA 410), F2 (1195)	3.53	75	2.04	51
NMS HA 89 x (OCC x HA 410), F2 (1208)	1.92	58	0.68	51
Recurrent parent HA 410		85	2.73	60
Checks				
Susceptible check HA 89 (S)	3.86	83	3.26	82
Susceptible check Cargill/Mycogen (270/272) (S)	2.13	54	4.04	82
Resistant check Croplan 305 (R)	1.86	41	1.95	47
Resistant check Croplan 343 (R)	0.87	3	0.95	27
*The first three letters of the <i>Helianthus</i> species are used to identify				

3. Mitotic chromosome analysis in backcross progenies

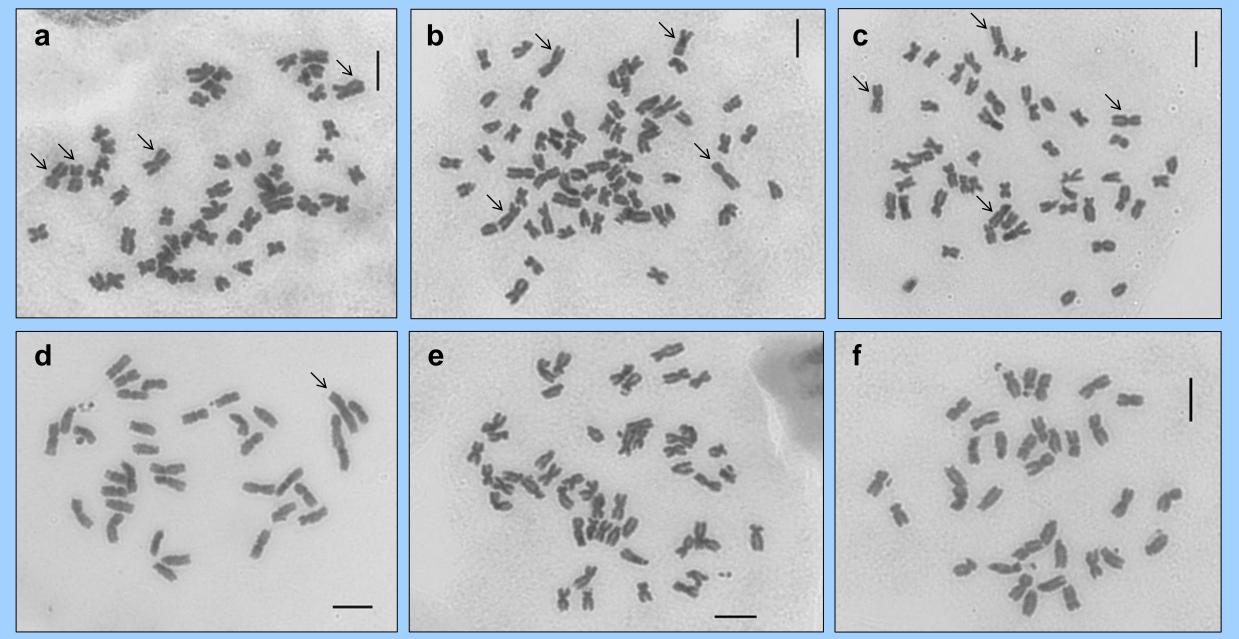


Figure 1. Chromosome spreads of several backcross progenies derived from *H. atrorubens* (a-d) and *H. laevigatus* (e and f). (a) G95/72 x HA 89, BC₁F₁, 2n=51; (b) G16/1039 x HA 410, BC₁F₂, 2n=68; (c) G16/1039 x HA 410, BC₂F₁, 2n=49; (d) NMS HA 89 x G16/1036-46, BC₂F₁, 2n=35; (e) G16/1053 x HA410, BC₂F₁, 2n=50; (f) NMS HA 89 x G16/1053-64, BC_2F_1 , 2n=34. Notice that there are large chromosomes (arrows) from *H. atrorubens* in the cultivated background in Figures a-d. Bars=5 µm.

Summary

1. Replicated field evaluation in 2016 of 2015 retests for head rot resistance confirmed successful introgression of resistance genes.

2. Seed was increased in the field for more than 150 progeny families in 2016. The BC_1F_1 progenies (2n=51) derived from four perennials were advanced to the BC_2F_1 generation.

3. Seven Sclerotinia resistant sources were crossed with cultivated HA 234 in 2016 to develop the RIL populations for Sclerotinia resistance QTL mapping.

NUT=H. nuttallii; SAL=H. salicifolius; and OCC= H. occidentalis.

(S)= Susceptible; (R)=Resistant. The number in parenthesis at the end of each pedigree is the family ID of the selected family.

References

- Block, C., L. F. Marek, and T. J. Gulya. 2011. Evaluation of wild Helianthus species for resistance to Sclerotinia stalk rot. Sclerotinia Initiative Annual Meeting, Bloomington, MN. January 19-21, 2011. Abstract p.13.
- Feng, J., G. J. Seiler, T. J. Gulya, and C. C. Jan. 2007a. Advancement of pyramiding new Sclerotinia stem rot resistant genes from H. californicus and H. schweinitzii into cultivated sunflower. Proc. 29th Sunflower Research Workshop, January 10-11, 2007, Fargo, ND. Available: http://www.sunflowernsa.com/research/research-workshop/ documents/Feng_etal_Pyramid_2007.pdf.
- Feng, J., G. J. Seiler, T. J. Gulya, C. Li, and C. C. Jan. 2007b. Sclerotinia stem and head rot resistant germplasm development utilizing interspecific amphiploids. Proc. 29th Sunflower Research Workshop, January 10-11, 2007, Fargo, ND. Available: http://www.sunflowernsa.com/research/researchworkshop/documents/ Feng_etal_Amphiploids_ 2007.pdf.
- Gulya, T. J. 2004. Sunflower disease incidence and distribution in midwestern U.S. in 2003. Proc. 26th Sunflower Research Workshop, January 14-15, Fargo, ND. Available: http://www.sunflowernsa/com/reserach-workshop/document/ Gulya_Disease_ midwest_ 2003_ 04.pdf.
- Liu, Z., X. Cai, G. J. Seiler, T. J. Gulya, K. Y. Rashid, and C. C. Jan. 2011. Transferring Sclerotinia stalk rot resistance genes from wild Helianthus species into cultivated sunflower. Proc. 33rd Sunflower Res. Workshop, Nat. Sunflower Association, January 12-13, Fargo, ND. Available:
 - http://www.sunflowernsa.com/uploads/research/581/liu_sclerotinia_ 11.pdf.
- Liu, Z., F. Wei, X. Cai, G. J. Seiler, T. J. Gulya, K. Rashid, and C. C. Jan. 2013. Update on transferring Sclerotinia resistance genes from wild perennial Helianthus species into cultivated sunflower. Proc. 10th Nat. Sclerotinia Initiative Meeting, January 23-25, Bloomington, MN. p. 32.
- Liu, Z., J. Zhang, X. Cai, G. J. Seiler, K. Y. Rashid, and C. C. Jan. 2015. Progress on transferring Sclerotinia resistance genes from wild perennial Helianthus species into cultivated sunflower [abstract]. ARS Sclerotinia Initiative Annual Meeting, January 21-23 2015, Bloomington, MN. p. 26.

Acknowledgments: Technical assistance of Lisa Brown, Puying Zheng, Marjorie Olson, Angelia Hogness, Chris Misar, Michelle Gilley, Zahirul Talukder, Leonard Cook, Thomas Gulya (retired), and Nikolay Balbyshev (retired) is greatly appreciated.