Evaluation of *Helianthus* germplasm for resistance to *Plasmopara halstedii* (downy mildew) and *Puccinia helianthi* (rust)

Ryan Humann
Tom Gulya
Laura Marek
Jim Jordahl
Scott Meyer
Maricelis Acevedo
Sam Markell

NDSU Plant Pathology
USDA-ARS Sunflower Unit (retired)
USDA-ARS NCRPIS
NDSU Plant Pathology
NDSU Plant Pathology
NDSU Plant Pathology
Challenges and Limiting Factors

Disease- #1 biological yield-limiting factor

1. Downy mildew
 - *Plasmopara halstedii*

2. Rust
 - *Puccinia helianthi*
Challenges and Limiting Factors

Disease - #1 biological yield-limiting factor

1. Downy mildew
 – Plasmopara halstedii

2. Rust
 – Puccinia helianthi
Downy Mildew Symptoms

Photos: Friskop
Downy Mildew Yield Losses

Photo: Markell
Challenges and Limiting Factors

Disease- #1 biological yield-limiting factor

1. Downy mildew
 – *Plasmopara halstedii*

2. Rust
 – *Puccinia helianthi*
Challenges and Limiting Factors

Disease- #1 biological yield-limiting factor

1. Downy mildew
 – *Plasmopara halstedii*

2. Rust
 – *Puccinia helianthi*
Symptoms and Signs

Photos: Markell
Management

• Genetic resistance is an effective management tool for both diseases

• Resistance genes are frequently overcome

• New sources of resistance are needed
Sources of resistance

- North American collection of wild *Helianthus* germplasm previously screened

- A disproportionate amount of resistance genes have been identified in germplasm originating from Texas

http://www.flowerpictures.net/flower_database/c_flowers/common_sunflower.html
Objective

Identify new potential sources of resistance to:
1. *Plasmopara halstedii*
2. *Puccinia helianthi*
Materials and Methods

Host

- Wild *Helianthus* accessions derived from Texas
 - 182 *H. annuus*
 - 33 *H. argophyllus*

 - Obtained from the USDA North Central Regional Plant Introduction Station

Pathogen

- *P. halstedii* and *P. helianthi* isolates collected from North Dakota
 - Commonly detected races
 - Highly virulent races

Photo: Humann
Inoculation and Evaluation

Downy Mildew

- Seedlings were inoculated with *P. halstedii* zoosporangia
- Incidence was evaluated 11 days post-inoculation
 - % Resistance = Resistant plants / Total plants

Photos: Humann
Results

1. Downy mildew
 – *Plasmopara halstedii*

2. Rust
 – *Puccinia helianthi*
Downy Mildew

P. halstedii

Common Race

H. annuus

Highly Virulent Race

H. argophyllus

Percent Resistance

H. annuus accessions (n=182)

Most Resistant

10%
Downy Mildew
P. halstedii

H. annuus accessions (n=22)

18 accessions with resistance >70%

Common Race

Highly Virulent Race

H. annuus

H. argophyllus
Downy Mildew

P. halstedii

Common Race

Highly Virulent Race

- *H. annuus*
- *H. argophyllus*

Most Resistant

10%

H. argophyllus accessions (n=33)
Downy Mildew

P. halstedii

- **Common Race**
- **Highly Virulent Race**

H. annuus

H. argophyllus

3 accessions with resistance >70%
Inoculation and Evaluation

Rust

• Plants inoculated 14 days after planting with *P. helianthi* urediniospores

• Infection types were evaluated 14 days post-inoculation
 - % Resistance = Resistant plants / Total plants

Resistant Reactions
(0, , , 1, 2)

Susceptible Reactions
(3, 4, 5)

Photo: Humann
Results

1. Downy mildew
 – *Plasmopara halstedii*

2. Rust
 – *Puccinia helianthi*
Rust

P. helianthi

H. annuus

- Common Race
- Highly Virulent Race

H. argophyllus

<table>
<thead>
<tr>
<th>Percent Resistance</th>
<th>H. annuus accessions (n=182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Most Resistant
10%
Rust

P. helianthi

22 accessions with resistance >70%

- **Common Race**
- **Highly Virulent Race**

H. annuus

H. argophyllus

H. annuus accessions (n=22)
Rust

P. helianthi

Common Race

Highly Virulent Race

H. annuus

H. argophyllus

H. argophyllus accessions (n=33)

Most Resistant

10%
Rust

P. helianthi

4 accessions with resistance >70%
Accessions resistant to both pathogens

H. annuus

H. argophyllus

Percent Resistance

NDSU NORTH DAKOTA STATE UNIVERSITY
Conclusions and Future Work

• Accessions resistant to both pathogens were identified
 – Seven *H. annuus*
 – Three *H. argophyllus*

• Future work will focus on characterizing the genes conferring resistance in these accessions
Acknowledgements

- USDA North Central Regional Plant Introduction Station
- National Sunflower Association
- North Dakota Agricultural Experiment Station
- DuPont Crop Protection
- NDSU Plant Path Ext. Group
Questions