

What is Genetic Gain?

- Improvement in some trait that is due to genetic changes (breeding), NOT agronomic (improvement in cultural practice)
 - Yield
 - Disease resistance
 - Herbicide resistance
 - etc.

Sunflower in USA

- Native species (Helianthus annuus L.)
- Domesticated by Native Americans
- First scientific breeding in Russia
- Open-pollinated varieties in US 1950-1970
- Hybrid system developed around 1970

Sunflower breeding basics

Market classes

- Oilseed
 - High oleic (85-93 % oleic acid)
 - NuSun (mid oleic)
 - Traditional (high linoleic)
- Non-oil (confection)
 - Shield or round type
 - Long seeded (2cm+ length)

Production challenge #1 - Birds

- Unpredictable and hard-to-control event
- Major reason for farmer abandonment of sunflower

Production challenge #2 – Sclerotinia and Phomopsis

- Phomopsis helianthi causes a stem lesion resulting in premature ripening and lodging
- Sclerotinia sclerotiorum can cause similar stem lesions but also a head rot
- Resistance is quantitatively inherited, but broad-sense heritability is high under controlled environments (0.7-0.8)
- Marker assisted breeding in infancy

Production challenge #4 -- insects

- Head infesting:
 - Banded sunflower moth ND
 - Sunflower midge -- ND
 - Red sunflower seed weevil SD -> host plant resistance reduces infestation by factor of 10
 - Sunflower moth KS, CO, TX
- Stem infesting:
 - Dectes stem borer TX to ND
 - Stem Weevil KS

Production challenge #5 -- weeds

- Weed control
 - Preplant herbicides
 - Imidazolinone and sulfonylurea herbicide systems
 - Conventionally bred

Studies in Genetic Yield Gain

- Oil yield = seed yield * oil content
- Argentina meta-analysis of historical data
 - Oil content increases driving oil yield progress
 - Verticillium resistant hybrids resulted in the highest yield
 - Backcross conversion resulted in no yield gain
- South Africa historical hybrid field study
 - Seed yield driving oil yield progress
- USA both types of studies in progress

Sunflower breeding has concentrated more on preserving existing yield potential (defensive breeding) and improving quality than pushing new yield gains

Future prospects

- Breeders need to balance yield gains with yield stability from defensive breeding
 - Slow yield gain will likely continue if current paradigms are kept→genetic gain gaps will widen
 - Alternative breeding methods are needed to make breeding more efficient since
 - The crop does not capture as much research investment as some others
 - It is grown on increasingly marginal land
 - Genetically Modified sunflower is nonexistent

Critical breeding research needs

- Doubled haploid
 - Rapid population development
 - Rapid development of CMS analogues of "female" heterotic group lines
- Expansion of genomic tools
 - SNPs are widely used today / full genome nearly complete
 - More fine mapping and development of "holistic" genomic selection programs

... but play to strengths

- Naturally drought resistant→climate change
- Non-GM status may have considerable value in the future for some foods and markets
 - labeling
- Very amenable to manipulation of fatty acids
- Extremely high oil (40-50% of seed mass)
- Over 50 species of Helianthus are interfertile
- Crop rotation options!

Acknowledgements

 USDA-ARS **National Sunflower Association National Sclerotinia Initiative** The sunflower industry, for assistance with the monograph chapter