

Response of sunflowers to cell-free culture filtrates produced by *Phomopsis*

Karthika Mohan¹, William Underwood², Samuel Markell¹, Megan
McCaghey³ and Febina Mathew¹

¹Department of Plant Pathology, North Dakota State University, Fargo, ND 58102;

²USDA-Agricultural Research Service, Sunflower Improvement Research Unit, Fargo, ND 58102;

³Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108.

Outline

- ✓ Research Background
- ✓ Rationale
- ✓ Objectives
- ✓ Materials and Methods
- ✓ Results
- ✓ Summary

Previous Research

- Cytological observations revealed that *P. helianthi* kills the host cells before colonizing tissues
 - ✓ Potentially by the toxic metabolites released by fungus (Heller and Gierth, 2001)
- Production of a phytotoxin “phomozin” by *P. helianthi* isolates have been demonstrated during infection on sunflowers (Mazars et al. 1990)
- Purified two phytotoxic metabolites (*cis*- and *trans*-4,6-dihydroxymellein) from cultures of French and Italian of *P. helianthi* isolates with varying degrees of virulence (Avantaggiato et al. 1999)

Rationale

- ✓ Production of phytotoxic metabolites by isolates of *Phomopsis gulyae* and *P. helianthi* from United States is not investigated

Research Objectives

1. To evaluate the response of sunflowers to *P. gulyae* and *P. helianthi* isolates, and their cell-free culture filtrates
2. To evaluate the response of ten sunflower accessions to *P. gulyae* and *P. helianthi* and their cell-free culture filtrates
3. To identify putative phytotoxic metabolites produced by the U.S. isolates of *P. gulyae* and *P. helianthi* through untargeted metabolomics approach.

Objective 1

To evaluate the response of sunflowers to isolates of *P. gulyae* and *P. helianthi*, and their cell-free culture filtrates

Greenhouse assay

- Two parallel experiments – for each species
 - Fungus inoculation
 - Cell-free culture free filtrate inoculation

- Isolates used:

Sl. No.	Isolate	State	Species
1	DIA40	SD	<i>P. gulyae</i>
2	DIA66	NE	<i>P. gulyae</i>
3	DIA73	ND	<i>P. gulyae</i>
4	DIA233	ND	<i>P. gulyae</i>
5	DIA234	ND	<i>P. gulyae</i>
6	DIA235	ND	<i>P. gulyae</i>

Sl. No.	Isolate	State	Species
1	DIA59	MN	<i>P. helianthi</i>
2	DIA131	ND	<i>P. helianthi</i>
3	DIA145	SD	<i>P. helianthi</i>
4	DIA290	ND	<i>P. helianthi</i>
5	DIA300	ND	<i>P. helianthi</i>
6	DIA323	ND	<i>P. helianthi</i>

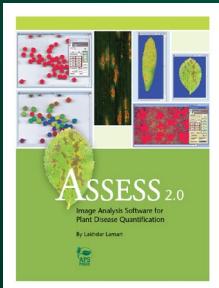
- Completely randomized design
- Three week old sunflower plants of a *Phomopsis*-susceptible variety N4HM354 (Nuseed genetics)
- Experiment conducted two times, six plants (replication) for each treatment
- Plants infiltrated with PDB or inoculated with plugs (no fungus) served as controls

Method of inoculation

- Performed on top most fully opened leaf

Mycelial inoculation –

Affixing mycelial plugs with tape



Cell-free culture filtrate inoculation - 200

μl filtrate delivered with a needle less
syringe

Observation

- One week post inoculation
- Disease symptoms were quantified

Greenhouse conditions

- Temperature regime - $23 \pm 2^\circ\text{C}$
- Light conditions - (16 h photoperiod)
- Relative humidity – 55 - 70%

Data Analysis

- One-way ANOVA
- Duncan's Multiple Range Test
- Using 'Agricolae' package in R v4.3.0
- Pearson's correlation test

Response of sunflower to *P. gulyae*

Cell-free culture free filtrate infiltration

Mycelial inoculation

DIA234

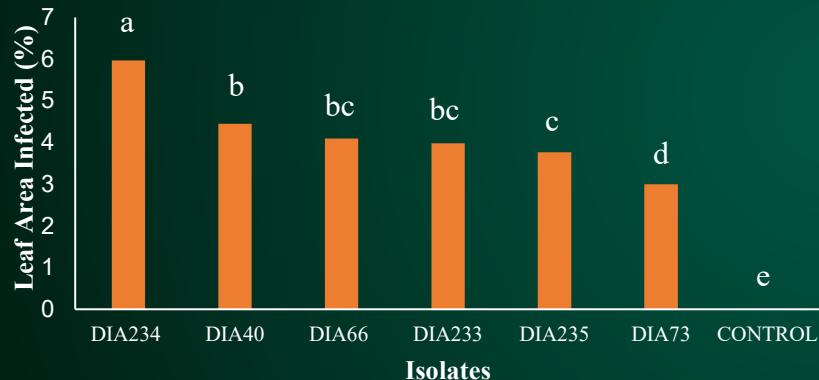
DIA40

DIA66

DIA233

DIA235

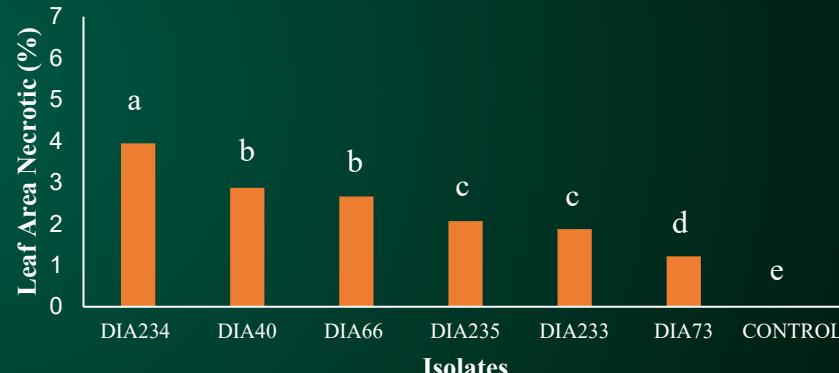
DIA73


Control

Sensitivity of sunflower to isolates of *P. gulyae*

Mycelial Inoculation

Expressed as Leaf Area Infected (LAI)


	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Trt					
DIA234	6	246.38	41.06	82.342	<0.0001 ***
CONTROL					

Culture Filtrate Inoculation

Expressed as Leaf Area Necrotic (LAN)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Trt					
DIA234	6	117.84	19.640	75.459	<0.0001 ***
CONTROL					

Significant positive correlation ($r = 0.95, P = 0.004$) between the LAI (by the isolates) and LAN (by the culture filtrates of the isolates) suggests involvement of metabolites produced by *P. gulyae* isolates from U. S. in symptom development

Response of sunflower to *P. helianthi*

Culture free filtrate infiltration

Mycelial inoculation

DIA300

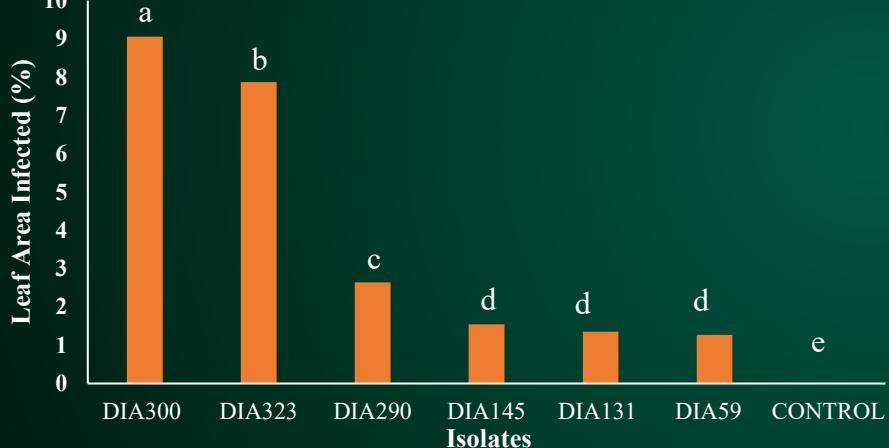
DIA323

DIA290

DIA145

DIA131

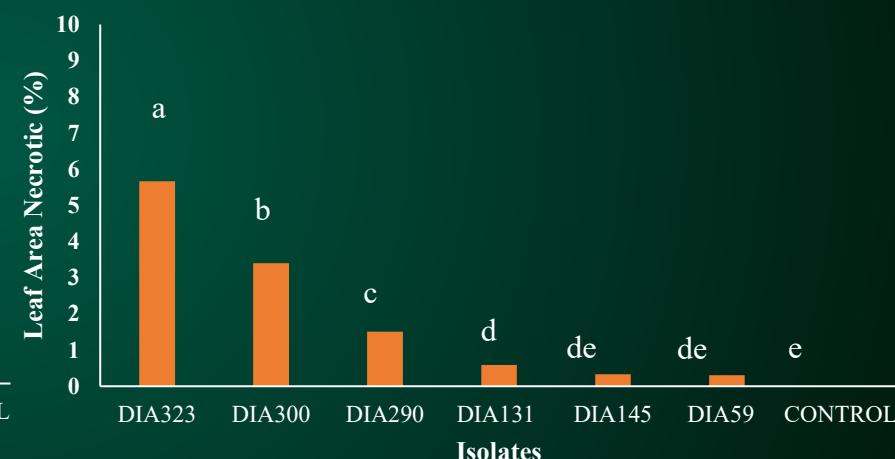
DIA59


Control

Sensitivity of sunflower to isolates of *P. helianthi*

Mycelial Inoculation

Expressed as Leaf Area Infected (LAI)


Trt	Df	Sum Sq	Mean Sq	F value	Pr(>F)
	6	915.4	152.57	156.468	<0.0001 ***

Culture Filtrate Inoculation

Expressed as Leaf Area Necrotic (LAN)

Trt	Df	Sum Sq	Mean Sq	F value	Pr(>F)
	6	319.8	53.31	237.585	<0.0001 ***

Significant positive correlation ($r = 0.90, P = 0.015$) between the LAI (by the isolates) and LAN (by the culture filtrates of the isolates) suggests involvement of metabolites produced by *P. helianthi* isolates from U.S. in symptom development

2. To evaluate the response of ten sunflower accessions to *P. gulyae* and *P. helianthi* and their cell-free culture filtrates

Methodology

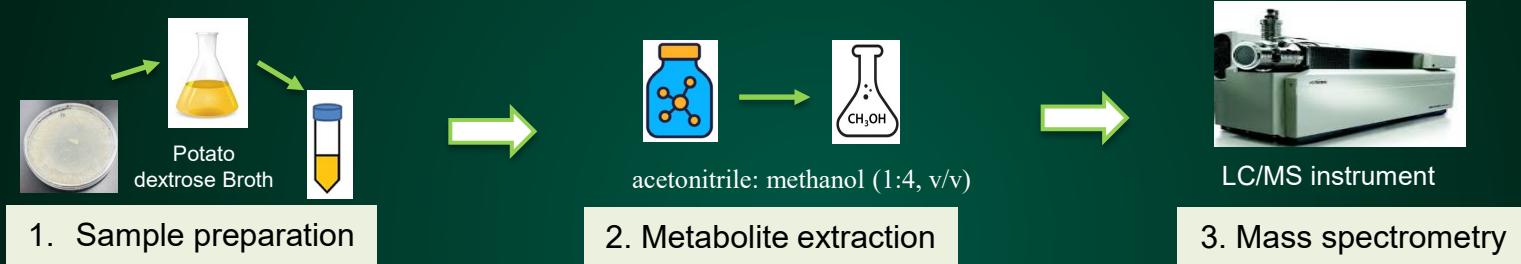
Sl. No	Name of accessions	Line name	Class	Country of origin
1	PI 603991	HA410	HA-Oil	USA
2	PI 509064	RHA 354	RHA-Non-oil	USA
3	PI 552934	HA 288	HA-Non-oil	USA
4	PI 561918	HA 378	HA-Oil	USA
5	PI 599984	HA 821	HA-Oil	USA
6	PI 618725	HA 421	HA-Oil	USA
7	PI 650657	Ames 10101	Open-pollinated variety	China
8	PI 650675	CO-PB 39	Open-pollinated variety	Spain
9	PI 650755	HA-R4	HA-Oil	USA
10	PI 650839	Taiyo	Open-pollinated variety	Netherlands

- Ten accessions, including susceptible check – HA410 ([Underwood and Misar 2024](#))

Methodology

- Two parallel experiments - Fungal inoculation and cell-free culture filtrates infiltration
- Isolates
 - *P. gulyae* (DIA234)
 - *P. helianthi* (DIA323)
- Experiments repeated twice
- For both inoculation and infiltration - six plants as replication per experiment
- Inoculation/Infiltration performed as mentioned before

Response of sunflower accessions


Sl. No	Name of accessions	<i>P. gulyae</i>		<i>P. helianthi</i>	
		Reaction to fungus	Reaction to cell-free culture filtrates	Reaction to fungus	Reaction to cell-free culture filtrates
1	PI 603991	Susceptible	+	Susceptible	+
2	PI 509064	Less susceptible	+	Less susceptible	+
3	PI 552934	Less susceptible	+	Less susceptible	+
4	PI 561918	Less susceptible	-	Less susceptible	+
5	PI 599984	Susceptible	+	Less susceptible	+
6	PI 618725	Less susceptible	+	Less susceptible	+
7	PI 650657	Less susceptible	+	Less susceptible	+
8	PI 650675	Susceptible	+	Less susceptible	+
9	PI 650755	Less susceptible	+	Less susceptible	+
10	PI 650839	Susceptible	+	Less susceptible	+

Reaction to fungus: + (sensitive), - (insensitive)

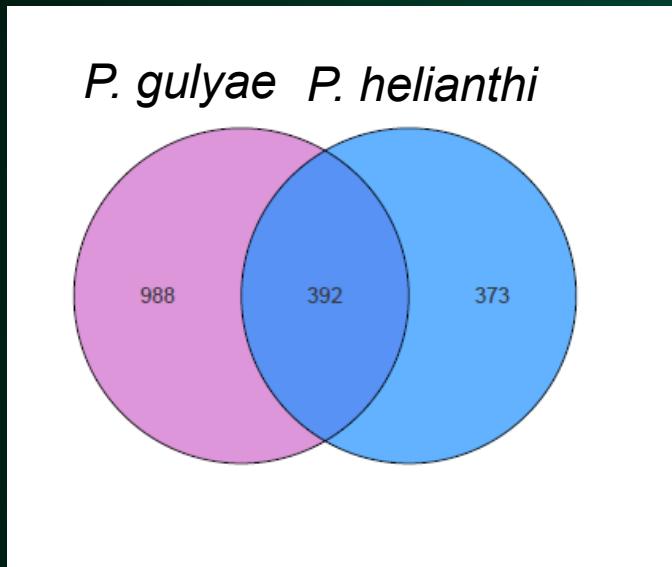
3. To identify putative phytotoxic metabolites produced by the U.S. isolates of *P. gulyae* and *P. helianthi* through an untargeted metabolomics approach.

Methodology

- Novogene America Inc., Sacramento, CA

HMDB (Wishart et al. 2022)
MassBank (Horai et al. 2010)
Novogene's spectral library

6. Identification of compounds


(Dührkop et al. 2020)

5. Feature selection

ProteoWizard (v3.x)
(Kessner et al. 2008)

4. Data acquisition

Untargeted LC–MS analysis of cell-free culture filtrates

Putative phytotoxic metabolites

<i>P. gulyae</i>	<i>P. helianthi</i>
3-nitropropionic acid ($P=0.013$) Cercosporin ($P = 0.0024$) Fumonisin B ₂ ($P = 0.001$) 3,4-dehydro-6-hydroxymellein ($P = 0.0$)	Gliotoxin ($P = 0.017$)

- No common phytotoxic metabolites between *P. gulyae* and *P. helianthi*
- Phytotoxic metabolites previously reported in *P. helianthi*, such as phomozin and 4,6-dihydroxymellein (Mazars et al. 1990; Avantaggiato et al. 1999) were not detected

Summary

- Significant correlation between LAI and LAN for isolates of *P. gulyae* ($r = 0.95, P = 0.004$) and *P. helianthi* ($r = 0.90, P = 0.015$)
 - ✓ Suggest potential role of fungal metabolites in symptom development
- PI 561918 was insensitive to cell-free culture filtrates of *P. gulyae*

Summary

- Untargeted metabolomics identified several metabolites putatively annotated to previously identified metabolites
- Previously reported metabolites in *P. helianthi* (phomozin and 4,6-dihydroxymellein) were not detected
 - ✓ Due to variations in culture media
- Further research is required to confirm the role of these metabolites in pathogenicity

Acknowledgement

My lab

Dr. Daniel Back and Dr. Melvin Bolton (USDA)

Dr. Alison Pokrzywinski and Jed Wall (Nuseed)

Dr. Laura Marek (ISU)

Julie Hochhalter (Jack Dalrymple Agricultural Research Complex)

A photograph of a sunflower field at sunset. In the foreground, a single sunflower is in sharp focus, showing its bright yellow petals and dark brown, textured center. The background is a vast, blurred field of sunflowers, creating a sense of depth. The sky is a warm, golden color, and the overall atmosphere is peaceful and sunlit.

THANK YOU