

Efficacy of foliar fungicides against *Phomopsis* in sunflower

Karthika Mohan¹, Samuel Markell¹, Robert Harveson², Peter Kovacs³, Megan McCaghey⁴, Kristin Simons⁵, Jessica Scherer¹, Bryan Hansen¹, Peter Aspholm⁴, Alexis Passolt⁴, Allison Rickey², Nicolas Passone³, Samuel Richter⁵
and Febina Mathew¹

¹Department of Plant Pathology, North Dakota State University, Fargo, ND;

²Department of Plant Pathology, University of Nebraska-Lincoln, Scottsbluff, NE;

³Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD;

⁴Department of Plant Pathology, University of Minnesota, St. Paul, MN

⁵Carrington Research Extension Centre, North Dakota State University, Carrington, ND.

Outline

- ✓ Introduction
- ✓ Rationale
- ✓ Objectives
- ✓ Materials and Methods
- ✓ Results
- ✓ Summary

Phomopsis stem canker

- Economically important disease of sunflower worldwide

(Harveson et al. 2016)

- Primarily caused by *Phomopsis gulyae* and *P. helianthi* in MN, ND and SD

(Elverson et al. 2020)

- More than 40% yield loss

(Mathew et al. 2015)

- Up to 25% reduction in oil content

(Acimovic 1986)

- Average prevalence – 58% in 2025
- North Dakota – 64% disease prevalence

(NSA Survey 2025)

Symptoms of *Phomopsis* stem canker

Lesions on leaf

Stem lesions

Pith damage

Pictures by: Karthika Mohan
(Survey 2024 and 2025)

Rationale

- Fungicides containing pyraclostrobin (QoI) are effective in the field, however, QoI fungicides possess high risk for fungicide resistance

(Kashyap et al. 2023; FRAC 2025)

- To accurately assess fungicide efficacy, essential to understand the relationship between the *Phomopsis* stem canker disease severity and yield

Research Objective

To evaluate the efficacy of fungicides with different modes of action within different yield environments under field conditions across MN, ND, NE, and SD

Objective 1

To characterize the relationship between Phomopsis stem canker severity and yield, and classify trials into yield environments

Details of trials

- Fungicide efficacy field trials between 2009 and 2021 (Kashyap et al. 2023; Dangal et al. 2023)
- Rain-fed areas (MN, ND, and SD) or irrigated areas (NE)
- At university farms or in farmer fields
- Fields with a history of *Phomopsis* stem canker
- Type of sunflower hybrid used and the weather variables varied

Field trials 2022 to 2025

- Field trials
 - Four states (MN (Crookston), ND (Grandin/Carrington), NE (Scottsbluff), and SD (Brookings)) in 2022, 2023, 2024 and 2025
- Using *Phomopsis*-susceptible sunflower hybrid
- In 2025 – Partially resistant hybrids also included at all locations
- Randomized complete block with ten treatments, including a non-treated control (NTC)
- Four replications per treatment

Treatments

Treatment	Active ingredients	Product	Company	Growth stage	Rate (fl oz/ A (mL/ha))
T1	-----	No fungicide control		---	---
T2	Pyraclostrobin (QoI)	Headline		R1	6 (438)
T3	Fluopyram (SDHI) + tebuconazole (triazole/DMI)	Luna experience	Bayer	V8	9 (658)
T4	Fluopyram + tebuconazole	Luna experience	Bayer	V8	9 (658)
	Pyraclostrobin	Headline		R1	6 (438)
T5	Fluopyram + tebuconazole	Luna experience	Bayer	R6	9 (658)
	Pyraclostrobin	Headline		R1	6 (438)
T6	Fluopyram + tebuconazole	Luna experience	Bayer	R1	9 (658)
T7	Fluopyram + tebuconazole	Luna experience	Bayer	R6	9 (658)
T8	Tebuconazole	Folicur	Bayer	V8	4 (292)
T9	Tebuconazole	Folicur	Bayer	R6	4 (292)
T10	Fluopyram + tebuconazole	Luna experience	Bayer	R1	9 (658)
	Pyraclostrobin	Headline		R6	6 (438)

Fungicide application

- Water volume of 15 gal/A (140 L ha⁻¹)
- MN, NE, ND – Backpack sprayer, and SD - High-clearance sprayer
- Application speed - 3 km/h and boom height - 1.3 meters above the canopy)
- TeeJet (Spraying Systems Co., Wheaton, IL) flat fan nozzle tips with 40 psi pressure

Backpack sprayer

High-clearance sprayer

Disease rating and yield estimation

- After R6 growth stage
- Ten random plants from the two middle rows
- Disease scoring scale of 0 to 5 (Mathew et al. 2015)
- Disease severity index (DSI) was calculated

$$DSI (\%) = \sum \{ [(P \times Q) / (M \times N)] \times 100 \}$$

where, P = class frequency, Q = score of rating class,

M = total number of plants and N = maximal disease index (Chiang et al. 2017)

- Yield estimated after adjusting to 10 % moisture

Data analysis

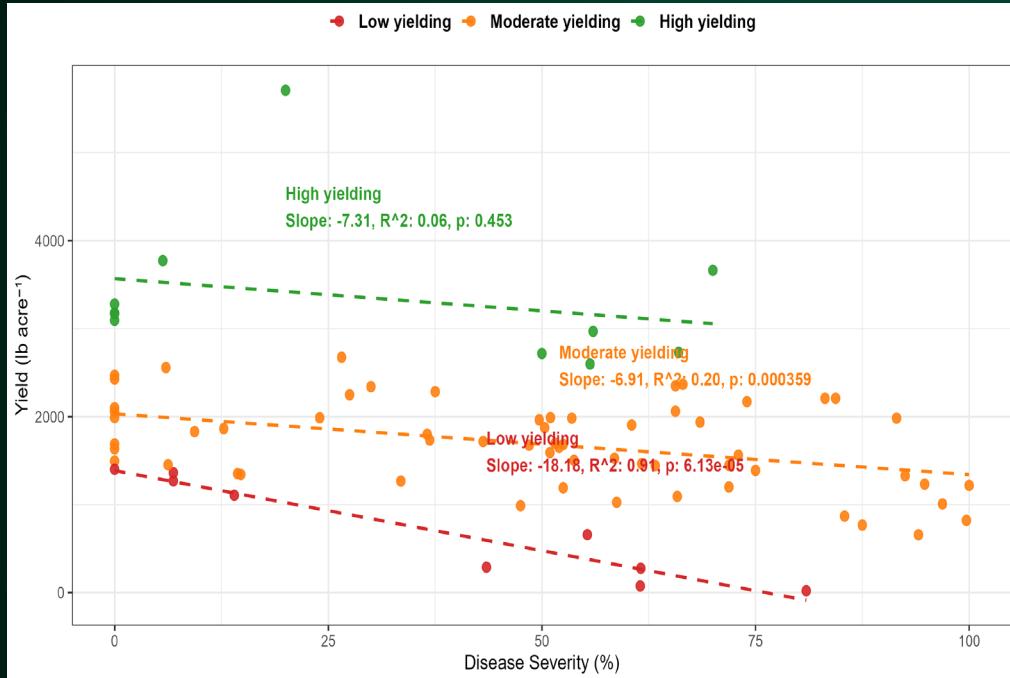
Relationship between DSI and Yield

- Fit a linear regression of yield on DSI using NTC data across 81 trials
- Includes field trials
 - From (2009–2021) (Kashyap et al. 2023; Dangal et al. 2023)
 - 18 trials (2022–2025)
- For each trial, calculate the residual = (observed yield – predicted yield)

Data analysis

Classification to yield environments

- Classify trials by residual standard deviation (SD)
 - Low-yield environment: residual < -1 SD (yield much lower than predicted)
 - High-yield environment: residual $> +1$ SD (yield much higher than predicted)
 - Moderate-yield environment: residual within ± 1 SD (yield near predicted)


Relationship between DSI and yield

- Across the NTC plots ($n = 81$), yield decreased with increasing disease severity
- Overall relationship

$$\text{Yield (lbs acre}^{-1}\text{)} = 2277.31 - 10.38 \times \text{DSI} [\text{R}^2 = 0.135 (P < 0.001)]$$

- Residual standard deviation = 816.4 lbs acre $^{-1}$
- Trials classified into three yield environments
 - Low yield ($n=9$) residual was less than -816.4,
 - Moderate yield ($n=61$) residual fell between -816.4 and +816.4
 - High yield ($n=11$) residual was greater than +816.4

Residual defined yield environments

Fitted regression lines

- High yield [Yield=3567.76–7.31×DSI (%)] ($R^2 = 0.06, P = 0.453$)
- Moderate yield [Yield=2032.26–6.91×DSI (%)] ($R^2 = 0.19, P = 3.59 \times 10^{-4}$)
- Low yield [Yield=1386.08–18.18×DSI (%)] ($R^2 = 0.91, P = 6.13 \times 10^{-5}$)

In the low and moderate yield environment, one-unit increase in DSI resulted in significant yield reduction of 18.18 and 6.91 lbs acre⁻¹ ($P < 0.0001$) respectively

Yield environments of trials (2022 - 2025)

High yield environments	Moderate yield environment	Low yield environment
Crookston 2023 Grandin 2023 Grandin 2024 Scottsbluff 2022 Scottsbluff 2023	Brookings 2022 Brookings 2023 Brookings 2024 Brookings 2025 (Sus) Brookings 2025 (Res) Crookston 2022 Crookston 2024 Crookston 2025 (Sus) Crookston 2025 (Res) Scottsbluff 2024	Carrington 2025 (Sus) Carrington 2025 (Res)

Objective 2

To evaluate the efficacy of fungicide treatment within different yield environments under field conditions across MN, ND, NE, and SD

Analysis of data

- Separately for yield environments
- Linear mixed-effects model in R (using lme4) (Bates et al. 2015)
- Treatment as fixed effect
- Random effects: trial, block and treatment \times trial interaction
- Models fit by restricted (residual) maximum likelihood (Patterson and Thompson, 1971; Harville, 1977)

Analysis of high yield environment trials

Treatments	Estimated marginal means	
	Yield (lbs acre ⁻¹)	DSI (%)
T1 - Non-treated control (NTC)	3174.0	58.40 a
T2 - Pyraclostrobin (6 fl oz/ A) at R1 growth stage	2790.0	50.55 abc
T3 - Fluopyram+ tebuconazole (9 fl oz/ A) at V8 growth stage	2921.0	47.20 bcd
T4 - Fluopyram+ tebuconazole (9 fl oz/ A) at V8 growth stage + pyraclostrobin (6 fl oz/ A) at R1 growth stage	3000.0	39.25 d
T5 - Pyraclostrobin (6 fl oz/ A) at R1 growth stage + fluopyram+ tebuconazole (9 fl oz/ A) at R6 growth stage	3107.0	43.85 bd
T6 - Fluopyram+ tebuconazole (9 fl oz/ A) at R1 growth stage	2893.0	41.40 d
T7 - Fluopyram+ tebuconazole (9 fl oz/ A) at R6 growth stage	2818.0	47.25 bcd
T8 - Tebuconazole (4 fl oz/ A) at V8 growth stage	2736.0	53.05 ac
T9 - Tebuconazole (4 fl oz/ A) at R6 growth stage	2820.0	51.45 abc
T10 - Fluopyram+ tebuconazole (9 fl oz/ A) at R1 growth stage + pyraclostrobin (6 fl oz/ A) at R6 growth stage	2764.0	47.05 bcd
Pr>F	0.254	0.0002

Treatments with fluopyram +tebuconazole at either V8/R1/R6 growth stage significantly reduced DSI ($P=0.0002$) by up to 33%

Analysis of moderate yield environment trials

Treatments	Estimated marginal means	
	Yield (lbs acre ⁻¹)	DSI (%)
T1 - Non-treated control (NTC)	1527.0 abc	49.5 ab
T2 - Pyraclostrobin (6 fl oz/ A) at R1 growth stage	1520.0 ab	43.3 c
T3 - Fluopyram+ tebuconazole (9 fl oz/ A) at V8 growth stage	1671.0 cde	49.5 ab
T4 - Fluopyram+ tebuconazole (9 fl oz/ A) at V8 growth stage + pyraclostrobin (6 fl oz/ A) at R1 growth stage	1762.0 e	42.2 c
T5 - Pyraclostrobin (6 fl oz/ A) at R1 growth stage + fluopyram+ tebuconazole (9 fl oz/ A) at R6 growth stage	1729.0 de	44.6 ac
T6 - Fluopyram+ tebuconazole (9 fl oz/ A) at R1 growth stage	1607.0 acd	44.5 ac
T7 - Fluopyram+ tebuconazole (9 fl oz/ A) at R6 growth stage	1520.0 ab	54.2 b
T8 - Tebuconazole (4 fl oz/ A) at V8 growth stage	1485.0 ab	48.0 abc
T9 - Tebuconazole (4 fl oz/ A) at R6 growth stage	1454.0 b	50.8 b
T10 - Fluopyram+ tebuconazole (9 fl oz/ A) at R1 growth stage + pyraclostrobin (6 fl oz/ A) at R6 growth stage	1597.0 abcd	43.7 ac
Pr>F	0.0002	0.0007

- Fluopyram+tebuconazole at either V8/R6 with pyraclostrobin (QoI) at R1 significantly increased yield ($P=0.0002$) by up to 15%.
- Pyraclostrobin (QoI) at R1 or with fluopyram+tebuconazole at R6 significantly reduced DSI ($P=0.0007$) by up to 12%.

Analysis of low yield environment trials

Treatments ^w	Estimated marginal means	
	Yield (lbs acre ⁻¹)	DSI (%)
T1 - Non-treated control (NTC)	280.0 a	66.5 a
T2 - Pyraclostrobin (6 fl oz/ A) at R1 growth stage	348.0 ab	56.0 ac
T3 - Fluopyram+ tebuconazole (9 fl oz/ A) at V8 growth stage	296.0 a	53.5 ac
T4 - Fluopyram+ tebuconazole (9 fl oz/ A) at V8 growth stage + pyraclostrobin (6 fl oz/ A) at R1 growth stage	271.0 a	55.5 ac
T5 - Pyraclostrobin (6 fl oz/ A) at R1 growth stage + fluopyram+ tebuconazole (9 fl oz/ A) at R6 growth stage	345.0 ab	37.0 b
T6 - Fluopyram+ tebuconazole (9 fl oz/ A) at R1 growth stage	268.0 a	58.8 ac
T7 - Fluopyram+ tebuconazole (9 fl oz/ A) at R6 growth stage	347.0 ab	58.8 ac
T8 - Tebuconazole (4 fl oz/ A) at V8 growth stage	282.0 a	52.5 ac
T9 - Tebuconazole (4 fl oz/ A) at R6 growth stage	280.0 a	49.8 bc
T10 - Fluopyram+ tebuconazole (9 fl oz/ A) at R1 growth stage + pyraclostrobin (6 fl oz/ A) at R6 growth stage	436.0 b	36.8 b
Pr>F	0.02	0.001

Fluopyram+tebuconazole at R1 with pyraclostrobin (QoI) at R6 significantly increased yield ($P=0.02$) and reduced DSI ($P=0.001$) by up to 55% and 45% respectively.

Summary

- Across the NTC plots of trials ($n = 81$), yield decreased with increasing severity of Phomopsis stem canker ($R^2 = 0.135, P < 0.001$)
 - one-unit increase in DSI resulted in significant yield reduction of $10.38 \text{ lbs acre}^{-1}$ ($P < 0.001$)
- One-unit increase in DSI resulted in yield reduction of 18.18 (low yield environment) and $6.91 \text{ lbs acre}^{-1}$ (moderate yield environment)
- Consider field history, disease pressure, and environmental conditions to maximize effectiveness of fungicide application

Acknowledgement

My lab

A photograph of a sunflower field at sunset. In the foreground, a single sunflower is in sharp focus, showing its bright yellow petals and dark brown center. The background is a soft-focus view of many more sunflowers stretching to the horizon under a warm, orange and yellow sky.

THANK YOU