NDSU NORTH DAKOTA STATE UNIVERSITY

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

Fungicides against *Phomopsis* in sunflower

Karthika Mohan¹, Samuel Markell¹, Robert Harveson², Peter Kovacs³, Megan McCaghey⁴, Jessica Scherer¹, Bryan Hansen¹, Peter Aspholm⁴, Allison Rickey², Nicolas Passone³, and Febina Mathew¹

¹Department of Plant Pathology, North Dakota State University, Fargo, ND;
 ²Department of Plant Pathology, University of Nebraska-Lincoln, Scottsbluff, NE;
 ³Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD;
 ⁴Department of Plant Pathology, University of Minnesota, St. Paul, MN

Outline

- Introduction
- Rationale
- Research Objective
- Materials and Methods
- Results
- Summary

Phomopsis stem canker

NDSU NORTH DAKOTA STATE UNIVERSITY

Pictures by: Karthika Mohan (Survey 2024)

- Economically important disease of sunflower worldwide (Harveson et al. 2016)
- More than 40% yield loss in 2010 (Mathew et al. 2015)
- Primarily caused by *Phomopsis* gulyae and *P. helianthi* in MN, ND and SD (Mathew et al. 2018)

Phomopsis survey 2024

50 sunflower fields surveyed

Four states

- North Dakota (n=31, from 12 counties)
- South Dakota (n= 17, from 5 counties)
- ➢ Minnesota (n=1)
- ➢ Nebraska (n=1)

Sheridan County, ND

Phomopsis prevalence in fields of North Dakota and South Dakota

٠

Prevalence of *Phomopsis* 80 60 40 20 P. helianthi P. gulyae North Dakota South Dakota

- Stem samples from 40 fields were processed
- *Phomopsis* isolated from 29 fields
- Symptoms observed (2024 Survey)

Wilting

Stem lesions of varying size and color

Pith damage

Distribution of *P. gulyae and P. helianthi* in North Dakota

NDSU NORTH DAKOTA STATE UNIVERSITY

P. gulyae

- Emmons
- Morton
- Pierce
- P. helianthi
 - Burleigh
 - Cavalier
 - Emmons
 - Foster
 - Grand Forks
 - Pembina
 - Sheridan
 - Walsh
 - Wells

Distribution of P. gulyae and P. helianthi in South Dakota

NDSU NORTH DAKOTA STATE UNIVERSITY

P. gulyae

- Hughes
- Potter
- Stanley
- Sully
- P. helianthi
 - Hughes
 - Stanley

Disease prevalence in 2024

	NSA survey in 2023 (Leo et al. 2024)		2024 Survey		
Location	Average Disease Prevalence in 2023	Disease incidence in 2023	Average Disease Prevalence in 2024	Disease incidence in 2024	
MN	90.9% (n=11)	0 to 45%			
ND	25.1% (n=79)	0 to 80%	61.2% (n=31)	0 to 80%	
SD	36.5% (n=52)	0 to 100%	52.9% (n=17)	5 to 50%	
NE	0% (n=6)	0			

Precipitation trends

Summer precipitation (June, July, and August combined) for the Midwest was slightly above the normal overall NDSU NORTH DAKOTA STATE UNIVERSITY (https://www.ncei.noaa.gov/)

Qol fungicide resistance conferred by G143A mutation is confirmed in *P. helianthi* (Mohan et al. 2022)

Fungicide Resistance Management Strategies

Integrated disease management

- Do not use the same product exclusively
- Restrict the number of treatments applied per season
- Maintain manufacturers' recommended dose
- Chemical diversity

- Tillage
- Rotation with non-host crops Eg; corn, wheat
- Managing weeds (Eg; Burdock, Kochia, Lamb's quarters)
- Use of tolerant hybrids

NDSU NORTH DAKOTA STATE UNIVERSITY

management/background#:~:text=Chemical%20diversity,and%20to%20mitigate%20resistance%20problems.

Why fungicide resistance management?

- Maintain resistant individuals within the fungal population at low frequency
- Extended efficacy and sustainability: Fungicide of interest continue to provide good efficacy under field conditions
- Greater yield
- Improvement on economic returns

Research Objective

Evaluate the effectiveness of fungicides and fungicide application timings for the management of Phomopsis stem canker in sunflower

Materials and Methods

- Field trials
 - Four states (MN, ND, NE, and SD) in 2024
 - Under natural disease pressure
- Using *Phomopsis*-susceptible oilseed hybrid
- Randomized complete block with ten treatments including a nontreated control (NTC)
- Four replicates per treatment

Application of fungicides

- Foliar fungicides
 - Qol (FRAC 11)
 - Triazole (FRAC 3)
 - SDHI (FRAC 7)
- ✓ Water volume of 15 gal/A
- ✓ MN, NE, ND Backpack sprayer

Backpack sprayer

- **High-boy sprayer**
- \checkmark SD High-boy sprayer (application speed 3 km/h and boom height 1.3 meters above the canopy)
- ✓ Using TeeJet (Spraying Systems Co., Wheaton, IL) flat fan nozzle tips with

40 psi pressure NDSU NORTH DAKOTA

Growth stages

NDSU NORTH DAKOTA STATE UNIVERSITY

Sequential applications - V8 + R1 and R1 + R6

Fungicide Treatments

Treatment	Active ingredients	Product	Company	Growth stage	Rate (fl oz/ A)
T1		No fungicide control			
T2	Pyraclostrobin (QoI)	Headline		R1	6
Т3	Fluopyram (SDHI) + tebuconazole (triazole/DMI)	Luna experience	Bayer	V8	9
T4 -	Fluopyram + tebuconazole	Luna experience	Bayer	V8	9
	Pyraclostrobin	Headline		R1	6
T5 -	Pyraclostrobin	Luna experience	Bayer	R1	9
	Fluopyram + tebuconazole	Headline		R6	6
Т6	Fluopyram + tebuconazole	Luna experience	Bayer	R1	9
Т7	Fluopyram + tebuconazole	Luna experience	Bayer	R6	9
Т8	Tebuconazole	Folicur	Bayer	V8	4
Т9	Tebuconazole	Folicur	Bayer	R6	4
T10	Fluopyram + tebuconazole	Luna experience	Bayer	R1	9
	Pyraclostrobin	Headline		R6	6

All the fungicide treatments were sprayed with adjuvants [NIS (0.25% V/V, Induce) and Crop oil (0.08% V/V, Interlock)]

Disease rating and statistical analysis

- After R6 growth stage
- Ten random plants from the two middle rows
- Disease scoring scale of 0 to 5 (Mathew et al. 2015)
- Disease severity index (DSI) was calculated
 DSI (%) = ∑ {[(P × Q)/(M × N)] × 100}
 where, P = class frequency, Q = score of rating class,

M = total number of plants and N = maximal disease index (Chiang et al. 2017)

- Yield estimated after adjusting to 10 % moisture
- Data analyzed in R (https://rstudio.com)

NDSU NORTH DAKOTA STATE UNIVERSITY

3: necrotic lesions 5: severe necrosis 2–5 cm or plant death Results

Brookings, SD

- ✓ No significant differences in disease severity or yield (p>0.05) among the treatments
- ✓ Application of fluopyram + tebuconazole at R1 followed with an application of pyraclostrobin at R6 showed yield increase up to 37%, compared to no fungicide control

Crookston, MN

- \checkmark No significant differences in disease severity or yield (*p*>0.05) among treatments
- ✓ Less than 10% disease severity index in all treatments
- ✓ No yield increase was observed when compared to no fungicide control

Grandin, ND

- ✓ No significant differences in disease severity or yield (p>0.05) among the treatments
- Application of pyraclostrobin at R1 followed with an application of fluopyram + tebuconazole at R6 showed yield increase up to 17%, compared to no fungicide control

Scottsbluff, NE

- \checkmark No significant differences in disease severity or yield (*p*>0.05) among the treatments
- Three per cent yield increase was observed when fluopyram + tebuconazole was applied at V8 followed by a single application of pyraclostrobin at R1, compared to no fungicide control

Summary

- Preliminary results indicate that
 - ✓ In 2024, Pyraclostrobin at R1 followed by Fluopyram + tebuconazole at R6 showed yield increase up to 32% when compared to no fungicide control
 - ✓ Support the yield increase observed with the same treatment
 ✓ In 2022 8 to 30%
 ✓ In 2023, 3 to 10%
- However, another year of research is necessary to confirm these findings

Acknowledgement

My lab:

Dr. Milsha George Dr. Denis Colombo Taofeek Mukaila Nitha Rafi Bijula M. Sureshbabu Dilorom Rasuleva Zachary Ittel Crop consultant: Brayden Espeland Sunflower growers: Rick Weber Justin Ogan

University of Minnesota

UNIVERSITY of NEBRASKA LINCOLN

United States Department of Agriculture National Institute of Food and Agriculture

THANK YOU

