NDSU NORTH DAKOTA STATE UNIVERSITY

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

Response of sunflowers to *Phomopsis* culture filtrates

Karthika Mohan¹, William Underwood², Daniel Back³ Febina Mathew¹

¹Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 ²USDA-Agricultural Research Service, Sunflower Improvement Research Unit, Fargo, ND ³USDA-Agricultural Research Service, Sugar beet Research Unit, Fargo, ND

STATE UNIVERSITY

Outline

- Introduction
- Rationale
- Research objectives
- Methodology
- Results
- Summary

Introduction

• Production of a phytotoxin "phomozin" by *Phomopsis helianthi* isolates have been demonstrated during infection on sunflowers

(Mazars et al. 1990)

• Purified two phytotoxic metabolites (*cis*- and *trans*-4,6-dihydroxymellein) from cultures of French and Italian of *P. helianthi* isolates with varying degrees of virulence

(Avantaggiato et al. 1999)

Rationale

- ✓ Production of phytotoxic compounds by U.S isolates of *Phomopsis* is not confirmed
- ✓ Sensitivity of sunflower to toxic metabolites (if present) remains poorly studied
- \checkmark These compounds when characterized,
 - ✓ Could complement conventional inoculation methods
 - $\checkmark\,$ A tool for screening sunflower genotypes for resistance to *Phomopsis*

Eg: Rhizoctonia solani and potato (Zhang et al. 2021)

Objectives

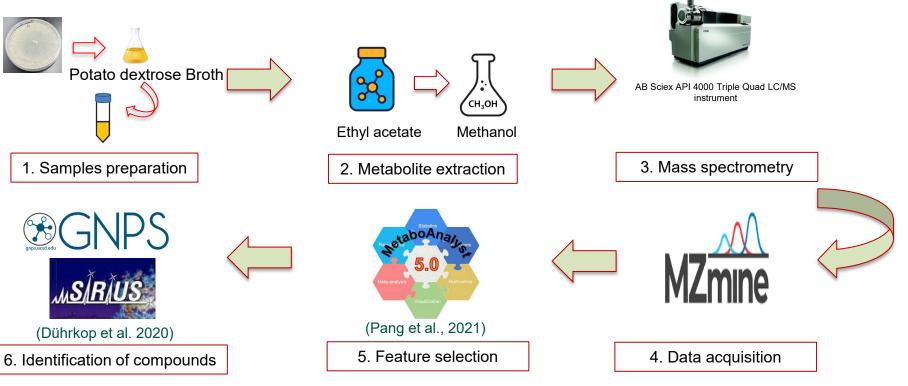
1. To determine the production of any phytotoxic metabolites by the U.S. isolates of *P. helianthi* and *P. gulyae*

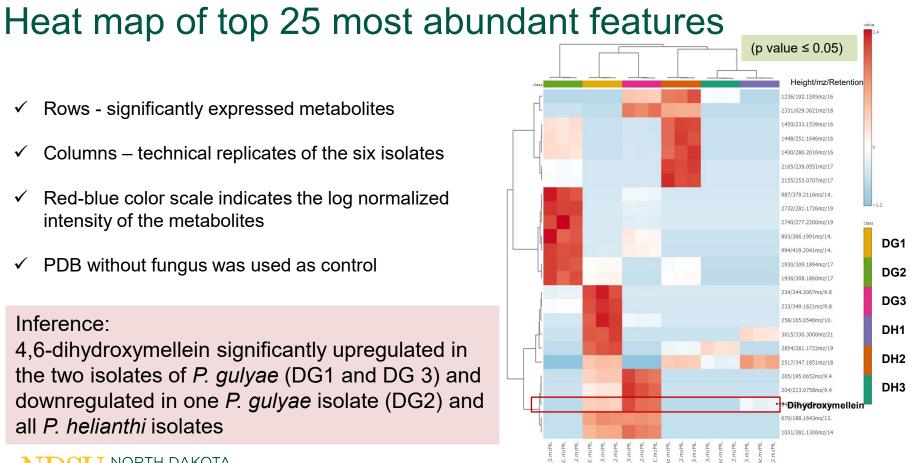
2. To evaluate the sensitivity of sunflowers to the phytotoxic metabolites (if present) in the crude culture filtrates of *Phomopsis*

Objective 1

To determine the production of any phytotoxic metabolites by the U.S. isolates of *P. helianthi* and *P. gulyae*

Untargeted metabolomics


- Goal: To comprehensively analyze all detectable metabolites, both known and unknown in the culture filtrates of *Phomopsis*
- Three isolates each of P. gulyae and P. helianthi


SI. No.	Isolate	Species
1	18-OP-KOC-DIA-59 (DH1)	P. helianthi
2	18-OP-SF-DIA-131 (DH2)	P. helianthi
3	19-OP-SF-DIA-145 (DH3)	P. helianthi
4	16-OP-SF-DIA-66 (DG1)	P. gulyae
5	19-OP-SF-DIA-73 (DG2)	P. gulyae
6	16-OP-KOC-DIA-40 (DG3)	P. gulyae

Methodology

NORTH DAKOTA STATE UNIVERSITY

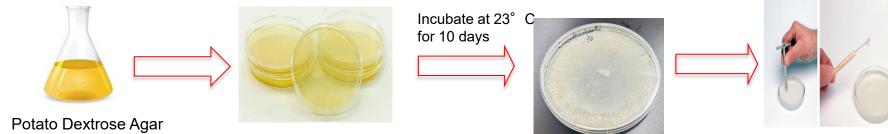
NDSU NORTH DAKOTA STATE UNIVERSITY

To evaluate the sensitivity of sunflowers to the phytotoxic metabolite present in the crude culture filtrates of *Phomopsis*

Greenhouse study

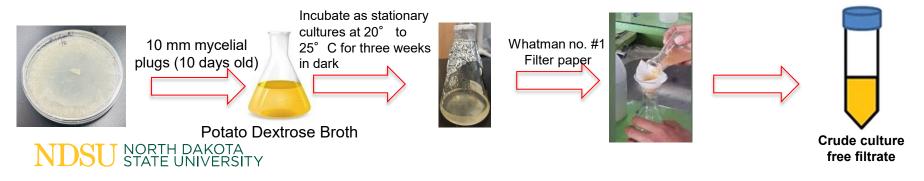
- Two experiments different inoculation methods
 - Mycelial contact method
 - Culture free filtrate inoculation

• Isolates used:


SI. No.	Isolate	Species	State
1	18-OP-KOC-DIA-59	P. helianthi	MN
5	16-OP-SF-DIA-40	P. gulyae	SD

- Completely randomized design
- Three week old sunflower plants of a *Phomopsis*-susceptible variety N4HM354 (Nuseed genetics)
- Experiment conducted two times, six plants (replication) for each treatment

NDSU NORTH DAKOTA STATE UNIVERSITY


Inoculum preparation

Leaf inoculation using mycelial plugs

6 mm mycelial plugs

Culture free filtrate infiltration

Inoculation Methods

Mycelial contact method

Mycelial inoculation - Affixing mycelial plugs with tape

Culture free filtrate Infiltration

Culture-free filtrate inoculation - 200 µl filtrate delivered with a needle less syringe

- V3 growth stage
- On top most fully opened leaf

Greenhouse conditions

- Temperature regime 23±2°C
- Light conditions (16 h photoperiod)
- Relative humidity 50 73%

Examination of symptoms

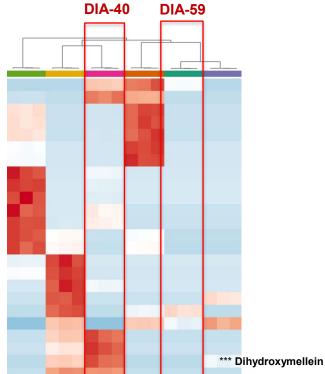
After inoculation plants examined daily for necrosis

Necrosis refers to dead tissue visible after 3 to 4 days post-inoculation surrounding small, brown to black colored spot (Lamari and Bernier 1989)

Response of sunflower to Phomopsis filtrates

Culture free filtrate infiltration

Mycelial inoculation


16-OP-KOC-DIA-40

18-OP-KOC-DIA-59

Culture filtrate of *Phomopsis* isolate (16-OP-KOC-DIA-40) with upregulation of 4, 6- dihydroxymellein produced larger necrotic lesion on the sunflower leaves

Summary

- Untargeted metabolomics
 - Top 25 significantly expressed metabolites in the culture free filtrates of *Phomopsis* included 4,6-dihydroxymellein
- Greenhouse study
 - Phomopsis isolate with upregulation of 4, 6- dihydroxymellein produced larger necrotic lesion on the sunflower leaves
 - Suggest possible role of 4, 6 dihydroxymellein in the necrotic symptoms developed during stem canker development

(Avantaggiato et al. 1999)

Acknowledgement

My lab:

Dr. Milsha George Dr. Denis Colombo Taofeek Mukaila Nitha Rafi Bijula M. Sureshbabu Dilorom Rasuleva

United States Department of Agriculture National Institute of Food and Agriculture

THANK YOU