Genetic Architecture of Salinity Tolerance

James P. McNellie USDA-ARS Fargo, North Dakota

2024 NSA Research Forum

January 11th, 2024

Introduction

Goal: Improve sunflower tolerance to high soil salinity using association mapping

Soil Salinity

- Assign plots to "High" or "Low" soil salinity
- Problem: Need salinity estimates for each plot but few soil samples

Soil Salinity

Danie G. Krige

Objective: Obtain plot level estimates of soil salinity using soil samples.

Michiel Van der Meulen Figure 5 https://www.researchgate.net/profile/Michiel-Van-Der-Meulen-2

Kriging

Sunflower Association Mapping Population

Genome-Wide Association Study (GWAS)

• Iteratively tests association between a SNP and trait value

Results

Yield

Results: Summary

	Trait	t Salinity Chr.		Position	
I	DTA	Slope	9	4,152,597	
-	Height	Low	8	13,593,081	
-	Leaf Area	Low	5	32,886,022	
	Leaf Area	High	13	18,054,346	
_	Leaf Area	Slope	12	61,311,476	
-	Leaf Weight	High	13	18,054,346	
	Leaf Weight	High	16	202,396,981	
	Oil %	Low	15	145,002,138	
	Oil %	High	10	18,009,713	
_	Oil %	Slope	17	170,676,936	
	Yield	High	13	165,654,686	
	Yield	Slope	11	4,726,109	
	Yield	Slope	11	153,189,931	
	Yield	Slope	15	26,889,266	

Results: Candidate Gene Analysis

Key Traits and Genes Associate with Salinity Tolerance Independent from Vigor in Cultivated Sunflower^{1[OPEN]}

Andries A. Temme,² Kelly L. Kerr, Rishi R. Masalia, John M. Burke, and Lisa A. Donovan³ Department of Plant Biology, University of Georgia, Athens, Georgia 30602

Trait	Salinity	Chr.	Position	<u>Temme et al. 2020</u>
Leaf Area	Slope	12	61,311,476	• Height & plant mass
Leaf Weight (suggestive)	High	10	20,541,564	• Leaf & plant mass

Results: Candidate Gene Analysis

Trait	Salinity	Chr.	Position	Species	Gene
Leaf Area	Slope	12	61,311,476	Arabidopsis	MYB53
			-	Maize	GDSL esterase/lipase CPRD49
			-	Cotton	cationic amino acid transporter 1
Leaf Weight	High	16	202,396,981	Flax	F-box/FBD/LRR-repeat
			_	Pearl Millet Sugar Beet	V-type proton ATPase subunit C
Yield	High	13	165,654,686	Alfalfa Barley Sorghum	FBD-associated F-box protein F-box/LRR-repeat

Future Objectives

- Salinity Lethality Greenhouse Study
 - Planting soon
 - Evaluate the same population in the greenhouse environment with a high soil salinity

To Predict

- Develop genetic markers based on results
 - Marker Assisted Selection (MAS)
 - Identify prospective parents containing desirable alleles for salinity tolerance
 - Cross and identify progeny having genetic markers associated with salt tolerance
 - Genomic Prediction
 - Use genetic markers for salinity tolerance in a statistical model (as fixed effect) to predict performance of new/untested progeny or hybrids

To Explain

• Identify and characterize the causative gene underlying the QTL

Questions!

Authors

James McNellie – USDA-ARS Brent Hulke – USDA-ARS William May – Agriculture & Agri-Food Canada Loren Rieseberg – University of British Columbia

Acknowledgements

Joseph Barham (Graduate Student) Ashley Barstow (Graduate student) Emily DeValk (Graduate student) Michael Grove (Technician) Landon Johnson (Intern) Brady Koehler (Technician) Madyson Sears (Intern) Brian Smart (Data Scientist) Zachary Tarble (Technician)

