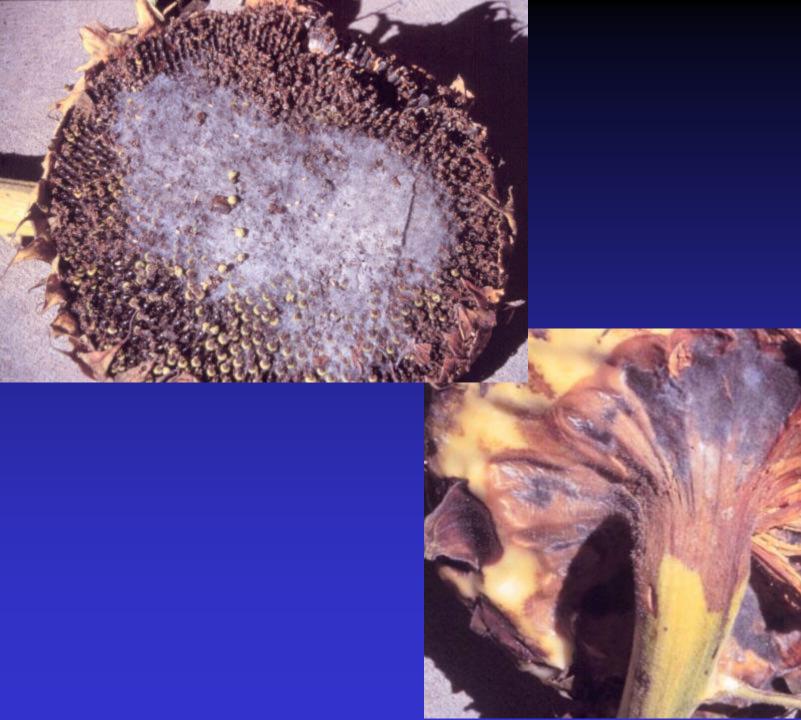

Managing Rhizopus Head Rot with Fungicides

Bob Harveson, University of Nebraska, Panhandle REC, Scottsbluff, Febina Mathew, South Dakota State University, and Sam Markell, North Dakota State University

Rhizopus Head Rot

- Caused by several fungal pathogens: *Rhizopus arrhizus*, *R. stolonifer*, and *R. microsporus*
- Overwinters in soils and opportunistically infects through wounds under conditions of high humidity and warm temperatures
- Occurs on maturing plants
- Capable of causing serious yield losses



Signs and Symptoms

- Dark spots on back of ripening heads
- Watery soft rot that turns dark with age
- Grayish, fuzzy fungal growth seen on flower side of head
- Heads dry prematurely, and become shredded
- Disease severity and spread increased by wounds - summer storms/hail, insects, and birds

Hail Damage Initiates Infection

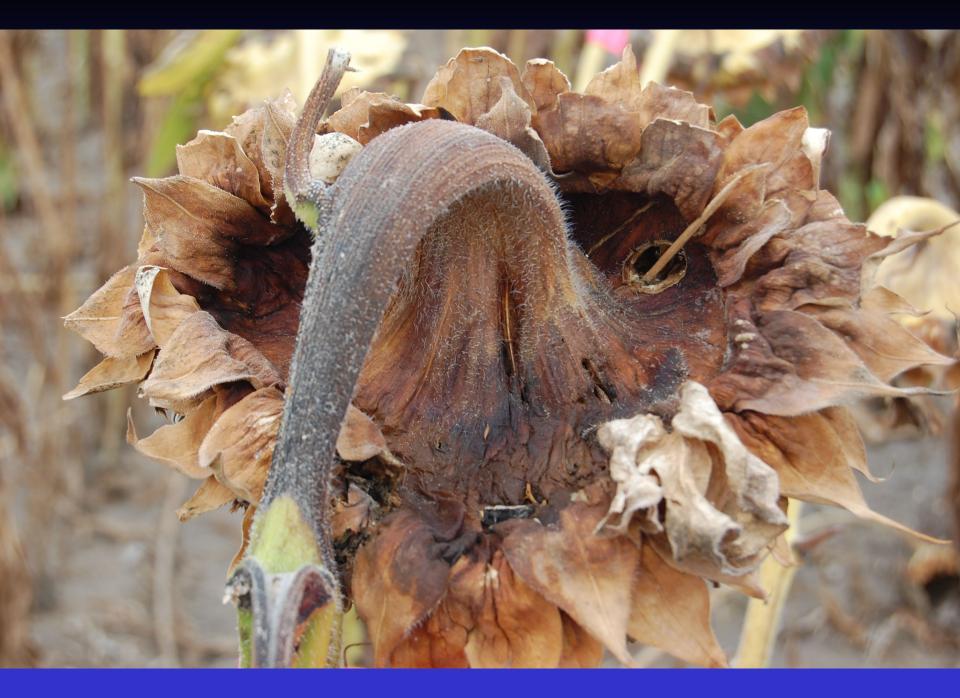
Seed Drop – Hail, Insect, Bird

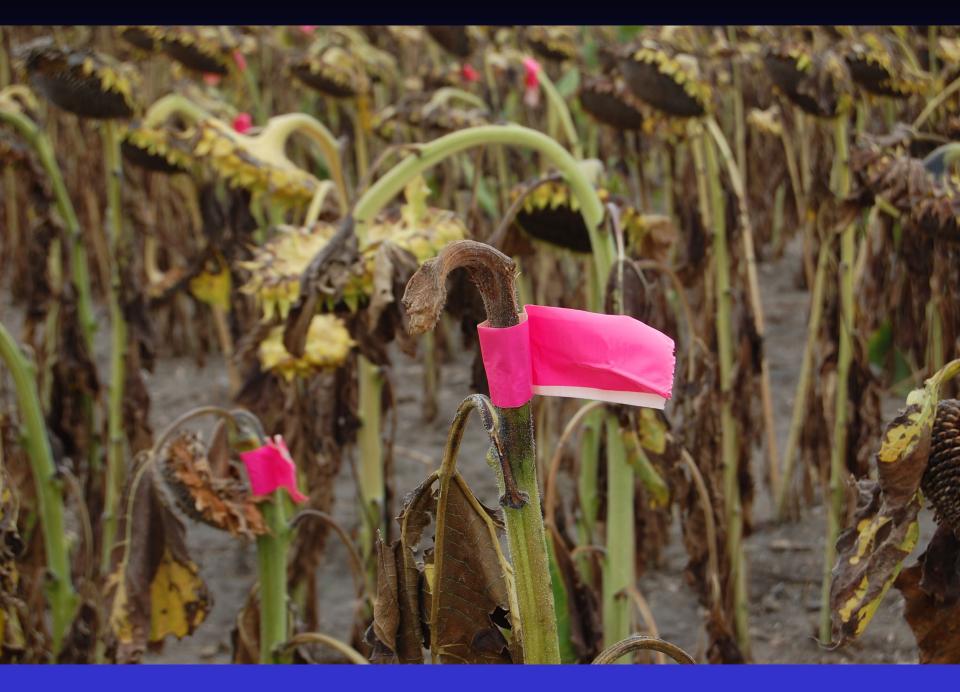
Collaborative Studies

- Over last 10-15 years –studies have been conducted on several sunflower diseases – disease management and yield losses
- Sam Markell, Febina Mathew, Bob Harveson – multiple graduate students and technicians
- NDSU, SDSU, and UNL
- Rust, Phomopsis, and Rhizopus Head Rot

Purpose of the Rhizopus Head Rot Project

- In 2016, it was problematic in North Dakota, South Dakota, and Minnesota
- More commonly seen in CHP Nebraska, Colorado, and Kansas
- Induce disease and document the potential damage to both oil and confectionary sunflower yields under field conditions
- Multiple geographically and environmentally different locations within sunflower production areas of the Great Plains


Purpose of the Rhizopus Head Rot Project


- Little current information as a resource
- Difficult disease to study

 -does not occur every year
 needs wounding
 -must inoculate for consistent disease pressure
 -unknown methodology for optimal
 - creation of disease

What We Learned

- Best method for wounding and inoculating
- Achieved consistent disease levels within fields
- Quantify losses due to Rhizopus head rot
- Next Step?

Studies in NE and SD 2002-2023

- Each had 7 treatments
- NE tested 4 fungicides and 2 copper alternative products applied 10-12 days after inoculation (R6)
- SDSU tested 3 fungicides at two application timings (R3 and R5 – two days after inoculation)

Methodology

- Plots established in South Dakota, and Nebraska planted in May
- Plots 4 30 inch rows 25 ft in length
- NE confectionary type and sprinkler irrigated
- SD oil type and rainfed (dry-land)
- Inoculated mid-August (10 plants per plot)
- Disease ratings late September to mid-October
- Harvest late October

Disease Ratings 0-4

- 0 = no signs or symptoms of disease
- 1 = 1-25% of head affected
- 2 = 26-50% of head affected
- 3 = 51-75% of head affected
- 4 76 100% of head affected

Rating of 1

Rating of 2

Rating of 3 (left) and 4 (right)

Nebraska Results 2022

	Disease	Yield (lbs)
Control	52.1a	1.97a
SaniDate	50.0a	1.93a
Folicur	63.1a	1.89a
Topsin	67.5a	1.82a
Life Guard	63.1a	1.77a
Endura	63.7a	1.68a
Priaxor	53.6a	1.63a

Nebraska Results 2023

	Disease	Yield (lbs)
Control	84.3a	0.89a
SaniDate	83.7a	0.76a
Folicur	94.3a	0.63a
Topsin	78.7a	0.73a
Life Guard	90.6a	0.69a
Endura	75.0a	1.14a
Priaxor	80.0a	0.90a

South Dakota Results 2022

Control Headline R3 Headline R5 Folicur R3 Folicur R5 Endura R3 Endura R5

Yield (lbs) Disease 0.92a 86.5a 0.24a 98.0a 92.0a 0.39a 0.72a 86.0a 72.0a 0.32a 90.0a 0.22a 81.5a 0.32a

South Dakota Results 2023

Control Headline R3 Folicur R3 Endura R3 Headline R5 Folicur R5 Endura R5

Disease	Yield (lbs)
61.5a	0.91a
58.5a	0.87a
62.7a	0.39a
55.5a	0.83a
54.0a	0.81a
56.0a	0.77a
54.5a	0.73a

Summary and Conclusions

- We do know how to inoculate and consistently create disease for studies
- We also know the extent of damage that is possible
- Still do not know how we can manage this disease with chemical products
 - Which one works best?
 - What time period?

Acknowledgement

- Dr. Peter Kovacs -SDSU
- Brad McManus -SDSU
- Brian Kontz SDSU
- Karthika Mohan SDSU
- Bijula Sureshbabu SDSU

- Tyler Patrick UNL PHREC
- Allison Rickey, UNL PHREC
- Clay Carlson UNL PHREC
- Kathy Nielsen UNL PHREC

Thank you for the funding of these projects!

Questions?

