NDSU NORTH DAKOTA STATE UNIVERSITY

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

Toxins associated with *Phomopsis*

Karthika Mohan¹, Samuel Markell¹, Robert Harveson², Angel Ugrinov³ Febina Mathew¹

¹Department of Plant Pathology, North Dakota State University, Fargo, ND; ²Department of Plant Pathology, University of Nebraska-Lincoln, Scottsbluff, NE; ³Department of Chemistry and Biochemistry, NDSU, Fargo, ND

Outline

- Research background
- Rationale
- Research Objective
- Materials and Methods
- Results and Summary

Research Background

✓ Species of *Phomopsis* produce toxins (Patwardhan et al. 1985)

- ✓ Cytological observations revealed that *Phomopsis helianthi* kills the host cells before colonizing tissues.
 - This could be because of phytotoxic compounds secreted by the fungus (Desanlis et al. 2012).

Rationale

Strong correlation between host resistance to phytotoxins and host resistance to pathogens in few pathosystems (Lamari and Bernier 1989; Brooks 2007).

Limited information on the Phomopsis-sunflower system.

Eg: *Pyrenophora tritici-repentis* and wheat *Rhizoctonia solani* and rice

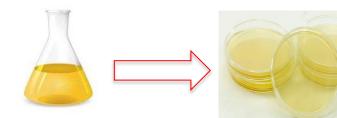
Research Objective

To identify the potential role of toxins and/or metabolites produced by U.S. isolates of *Phomopsis helianthi* in the development of Phomopsis stem canker

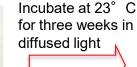
Greenhouse study

- Two experiments different inoculation methods
 - Stem wound inoculation
 - Culture free filtrate inoculation
- Completely randomized design
- *Phomopsis*-susceptible variety N4HM354 (Nuseed genetics)
- Experiment conducted two times
- Six plants (replication) for each treatment

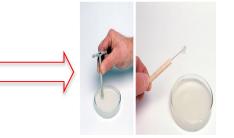
Isolates


• Ten isolates of *P. helianthi*

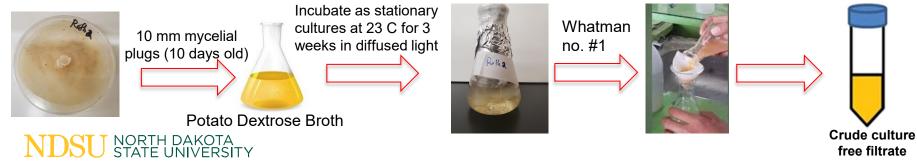
Name of the Isolate	Location
ROTH 2	Wilkin, MN
L1	Burleigh, ND
AK7	Potter, SD
K2	Cass, ND
GLY3	Clay, MN
19	Cass, ND
H45	Polk, MN
STAP6	Todd, MN
AG1	Walworth, SD
J10	Cass, ND



Inoculum preparation


Stem wound inoculation

Potato Dextrose Agar



6 mm mycelial plugs

Culture free filtrate inoculation

Inoculation

- V4 to V6 growth stage
- Third internode of the plants
 - Stem wound inoculation placed mycelial plugs after wounding using a 20-gauge, hypodermic needle and secured with parafilm
 - Culture-free filtrate inoculation –
 500 µl filtrate delivered
 using 20-gauge, hypodermic needle

Greenhouse conditions

- Wound secured with
 Parafilm
- Temperature 23±2°C
- Light conditions (16 h photoperiod)
- Pots watered to saturation every alternate day

Observation

• After inoculation plants examined daily for necrosis

Necrosis refers to dead tissue visible after 3 to 4 days postinoculation surrounding small, brown to black colored spots (Lamari and Bernier 1989)

- Necrotic symptoms visible four days post-inoculation on all plants
- Observations were taken 10 days post-inoculation

Observation

• Fungus reaction - Disease rating scale (0 to 5) (Mathew et al. 2015)

0: No discoloration

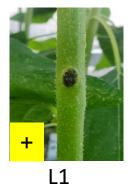
1: low level discoloration

3: necrotic lesions 2–5 mm, leaf wilting and twisting

5: very severe necrosis and lesions, or plant death

 Toxin reaction : (+)= sensitive; and (-) = insensitive [sensitivity and insensitivity are used to describe the reaction of the host to the toxin].

Stem wound Inoculation



Culture filtrate Inoculation

STAP6

ROTH2 K2 NDSU NORTH DAKOTA STATE UNIVERSITY

Results

	Reaction		
Name of the Isolate	Fungus	Toxin	
ROTH 2	3	+	
L1	1	+	
AK7	1	+	
K2	5	+	
GLY3	2	+	
19	1	+	
H45	1	+	
STAP6	2	+	
AG1	1	+	
J10	2	+	

NDSU NORTH DAKOTA STATE UNIVERSITY

To characterize the toxins and/or metabolites produced by *P. helianthi*, we adopted two methods:

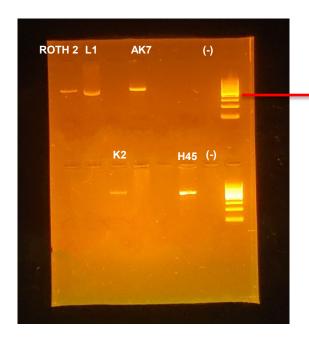
✓ Molecular assay

✓Mass spectroscopy

Molecular assay

- ✓ Polyketides are secondary metabolites associated with pathogen virulence
- ✓ Genome of the highly aggressive isolate of *P. helianthi* was analyzed for putative polyketide synthase (PKS) genes
 - ✓ > 40 PKS genes, more than those reported in other fungi such as *Penicillium*, *Aspergillus*, *Gibberella*, and *Cochliobolus*.
- ✓ Among the PKS genes, *DhPKS1* was fully characterized
 - ✓ Present in virulent French and Yugoslavian isolates
 - ✓ No information about U.S. isolates

(Ruocco et al. 2018)



Methodology

- ✓ DNA extraction of the 10 isolates
- ✓ CTAB method (Doyle and Doyle 1987)
- ✓ Primers designing using NCBI Primer-BLAST
- Primer sequences of DhPKS1 gene:
 Forward primer 5' AAGCGCGGTGTATCTTGACA 3' Reverse primer - 5' CCAACTTTCCCTCGGCTTCA 3'

PCR Conditions: 94° C - 3 min 94° C - 30 s 59° C - 30 s 72° C - 1 min 72° C - 5 min

Results

500 bp

- ✓ Six out of the 10 isolates were amplified
- ✓ DhPKS1 gene is presumably present in the six isolates, and responsible for pathogen virulence and toxin production

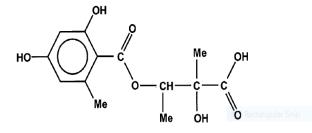
Results

Name of the Isolate	Reaction		Amplification of
	Fungus	Toxin	DhPKS1 gene
ROTH 2	3	+	Amplified
L1	1	+	Amplified
AK7	1	+	Amplified
К2	5	+	Amplified
GLY3	2	+	Not amplified
19	1	+	Not amplified
H45	1	+	Amplified
STAP6	2	+	Amplified
AG1	1	+	Not amplified
J10	2	+	Not amplified

Non *PKS* (putative) producers also caused necrosis suggesting possible role of other metabolites in disease development

NDSU NORTH DAKOTA STATE UNIVERSITY

Mass spectroscopy


- ✓ Identifies and quantifies unknown compounds via molecular weight determination.
- ✓ Three compounds produced by *P. helianthi* have been identified:
 - ✓ Phomozin from French isolates of *P. helianthi* (Mazars et al. 1990)
 - ✓ Cis-4,6 dihydroxymellein and Trans-4,6-dihydroxymellein from French and Italian *P. helianthi* isolates (Avantaggiato et al 1999)

AVANTAGGIATO ET AL.

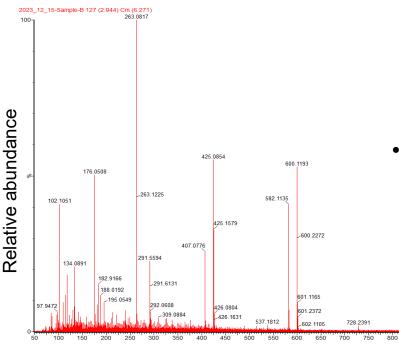
Cis-4,6-dihydroxymellein (P2)

Trans-4,6-dihydroxymellein (P1)

Phomozin

Figure 1. Chemical structure of phytotoxic compounds produced by Phomopsis helianthi

Mass spectroscopy


Phomozin provokes necrotic lesions on sunflower leaves (Mazars et al. 1990)

✓ Mellein and its derivatives affect photosynthesis by causing a decrease in CO₂ absorption (Bousquet et al.1977)

✓ The specific mechanism underlying the destruction and/or disruption of host cells by *Phomopsis* is unknown.

Results

NORTH DAKOTA

Sample preparation:

- Fungal liquid culture passed through cheesecloth to remove mycelium
- Crude filtrate was centrifuged at 8000 g for 2 minutes and the supernatant was used for analysis (Avantaggiato et al 1999)
- No compounds detected at
 ✓211 Dalton *Cis*-4,6-dihydroxymellein
 Trans-4,6-dihydroxymellein

1320.2595

1485 0359

✓270 Dalton - Phomozin

898.3008

850 900 950 1000

Mass/charge ratio

1036 2253

1050 1100 1150

1201 3358

1200 1250 1300 1350 1400 1450

Results

Name of the Isolate	Rea	ction	Amplification	Mass spec		
	Fungus	Toxin	of <i>DhPKS1</i> gene	results		
ROTH 2	3	+	Amplified	Not detected	Putative PKS	
19	1	+	Not amplified	Not detected	Not putative Pl	KS

Summary

- In the greenhouse, necrosis was observed on the plants inoculated with the filtrate of *P. helianthi* culture at 10 days post-inoculation
 - Indicates the role of potential toxins (or other metabolites) in disease development

• Six isolates were identified to possibly have the *DhPKS1* gene associated with pathogen virulence and toxin production.

Summary

- Preliminary results suggest that multiple compounds may be associated with *P. helianthi* infection which needs further investigation
 - Demonstrated in *Phomopsis* sp. infecting millet (Patwardhan et al. 1974) and fennel (Evidente et al. 2011)

 In the coming months, characterize toxins and/or other metabolites, and refine the greenhouse inoculation method to screen sunflower accessions for *Phomopsis* resistance

Acknowledgement

My lab: Bijula Sureshbabu Dilorom Rasuleva Nitha Rafi Taofeek Mukaila Tasneem Fathima

NDSU

Nebraska Lincoln®

THANK YOU