Sunflower Treated with Avipel (Anthraquinone) Bird Repellent Hans Kandel, Burton Johnson, Chad Deplazes, George Linz, Michele Santer, #### Bird damage production issue - Maturing sunflower is susceptible to damage by birds especially blackbirds (Agelaius phoeniceus and Quiscalus quiscula). - The National Sunflower Association (NSA) identified Blackbird damage to sunflower as a major issue in the production of sunflower throughout the US. #### Objective - Establish the amount of residue on the sunflower head after application of Anthraquinone - Observe the plots for bird activity - Establish the residue levels on the seed - Observe actual bird damage at harvest - Measure yield - Observe plant growth to make sure there is no negative effect of the Anthraquinone 8 replicates Control (no treatment) Application at R5.1 Application at R5.5 Application at R5.9 Hybrid used Croplan 564CL,NS (Clearfield) ↓ South #### Management Dates 2008 - Planting date May 29 - Beyond Herbicide application July 1 - Application of Anthraquinone August 13 (R5.1 and R5.5) - Application of Anthraquinone August 19 (R5.9) - Harvest October 9-10 ### August 8th 2008 not all sunflower in bloom August 8th in field variability Heads at bloom 5.1 at application of bird repellent (August 13 2008) Heads at bloom 5.5 at application of bird repellent #### **Application** - Rate 1 gallon of 'Avipel' liquid per acre - Active ingredient 9,10-Anthraquinone 50% and other ingredients 50% - One gallon 'Avipel' in 10 gallons of water - Spray direction facing the sunflower head - Spray pressure 35 Psi Filter paper top at R 5.1 Filter paper right at R5.9 #### Filter paper interception | No. | Gallon
'Avipel'
(acre) | | |-----------|------------------------------|--| | Control | 0.008b | | | Bloom 5.1 | 0.089b | | | Bloom 5.5 | 0.593a | | | Bloom 5.9 | 0.002b | | | Mean | 0.17 | | | CV % | 250 | | | P < 0.10 | | | Head samples day after application Top R5.1-5.2 Bottom R5.5 Before spraying sunflower heads were marked with a ribbon and at harvest heads were bagged and shipped to the Lab. #### Residue on sunflower seed ppm #### Anthraquinone (ppm) Control 0b 15.7a Bloom 5.1 Bloom 5.5 6.6ab Bloom 5.9 1.4b Mean 5.9 175 CV % P < 0.05 ## Birds in nearby field Table 1. Example of observations recorded on bird feeding activity in 2008. | Observ
er: LM | Date | Species | Tot | Behavioral Observations | |------------------|------------------------|---------|-----|--| | | | | | | | Obcom | Sunny mid
40's East | | | | | Observ
er SG | breeze
5 mph | | | | | 6
4
11 | 3 прп | AmGo | 0 | Perching on head, not eating There are no birds ~25 AmGo flew over, none in plot | | 5 | | RoDo | | on ground | | 16 | | AmGo | | Perching on head, not eating | | 18 | | AmGo | | Not on heads, not eating | | 12 | | AmGo | | Not eating | | | | | | flushed from ground when I | | 9 | | RoDo | 2 | approached | | 1 | | AmGo | 1 | Perching on head, not eating | | | | | | flushed from ground when I | | 13 | | RoDo | l | approached | | 3 | | | 0 | There are no birds | | 17 | | AmGo | 1 | flushed when I approached | #### Bird Damage % Seed Loss #### Yield, Head Damage and Adjusted Yield | | Seed | head | Adjusted | |-----------|--------|--------|----------| | | Yield | damage | yield | | | (lb/a) | (%) | (lb/a) | | Control | 1866 | 18.1 | 2291 | | Bloom 5.1 | 1979 | 14.2 | 2295 | | Bloom 5.5 | 1875 | 17.3 | 2250 | | Bloom 5.9 | 1926 | 16.1 | 2297 | | Mean | 1911 | 16.4 | 2283 | | | NS | NS | NS | | CV % | 10.4 | 29.3 | 9.3 | ## Height, Harvested Heads, Seed Weight per Head | | height | 20 ft x 2rows | Seed/ | |-----------|--------|---------------|--------| | | | harvested | Head | | | (inch) | (heads) | (gram) | | Control | 65.9 | 49.0 | 44.1 | | Bloom 5.1 | 64.6 | 46.5 | 49.8 | | Bloom 5.5 | 64.5 | 48.6 | 45.2 | | Bloom 5.9 | 64.9 | 48.1 | 46.4 | | Mean | 65.0 | 48.1 | 46.4 | | | NS | NS | NS | | CV % | 4.3 | 11.5 | 17.0 | #### Lessons learned - Sunflower plant growth does not appear to be negatively influenced by the application of Anthraquinone. - It was difficult to get the timing of the application right as the individual sunflower plants were at different growth stages at any given time. - As the heads start to bend over it will be more challenging to apply the repellent to the front of the head. #### **Lessons Learned** - In the beginning of head fill there were no differences in bird damage visible. - Birds were observed in a nearby field and only a few in the experimental area. - No significant differences in amount of bird damage. #### Lessons Learned - Relative low amounts of product were found on the filter paper. - No significant differences in yield were observed. - Earlier application had more residue on the seed than later application.