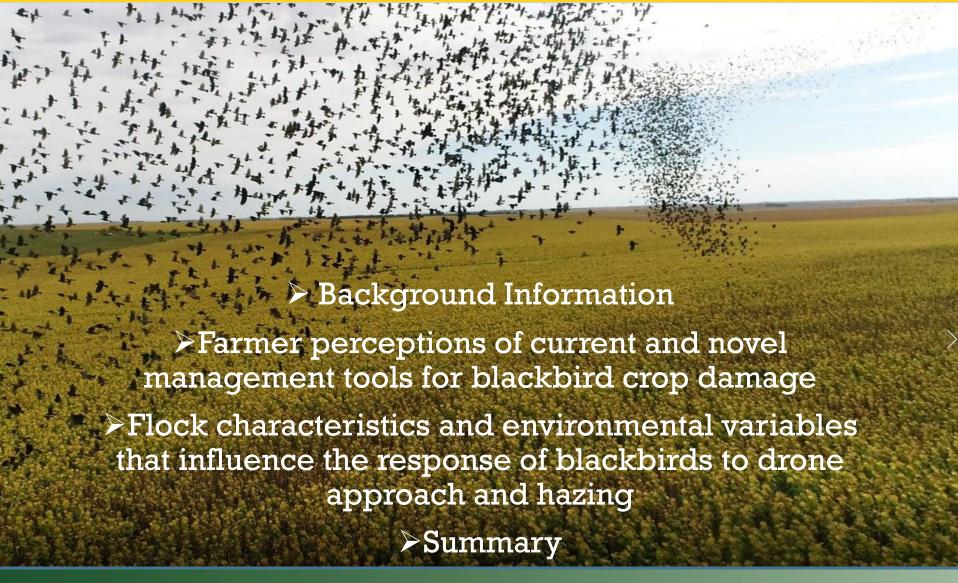


An Evaluation of Farmer Perceptions and Biological Efficacy of Drones for Avian-Agriculture Conflict

Mallory G. White NDSU, Dept. of Biological Sciences, Fargo, ND

Dane R. Mataic NDSU, Dept. of Sociology and Anthropology, Fargo, ND


Jason R. Boulanger, White Buffalo Inc., East Haddam, CT

Morgan S. Donaldson, NDSU, Dept. of Biological Sciences, Fargo, ND

Page E. Klug USDA APHIS Wildlife Services, National Wildlife Research Center, Fargo, ND

Outline

The Research Approach

Field

Landscape

Region

Field scale

Foraging & antipredator behavior

Landscape scale

Habitat & resource selection

Regional scale

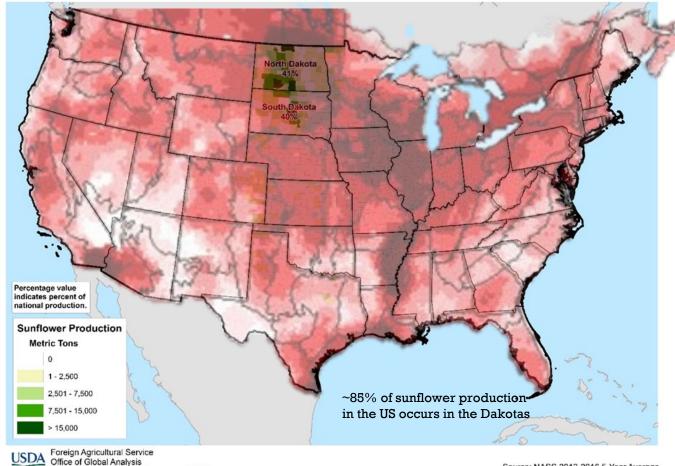
Demographic trends

Population Biology
Migration Ecology
Reproductive Biology
Sensory Ecology
Antipredator Behavior
Foraging Behavior

Management Tools

Deterrent Devices
Habitat Management
Repellents
Evading Strategies
Agricultural Practices
Farmer Opinions

Landscape Scale


Land Use Change
Climate Change
Habitat Use
Breeding
Roosting
Migration

~85% of sunflower production in the US occurs in the Dakotas

Source: NASS 2012-2016 5-Year Average Total Sunflower Production by County

Sunflower Damage in Prairie Pothole Region

nternational Production Assessment Division

>\$3.5 million annually

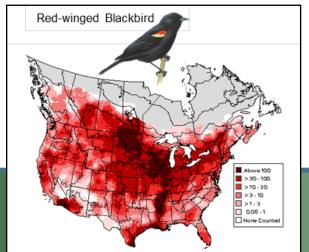
Sunflower Damage in North Dakota

>\$10.7 million annually

(regionally 2%, locally >20%)

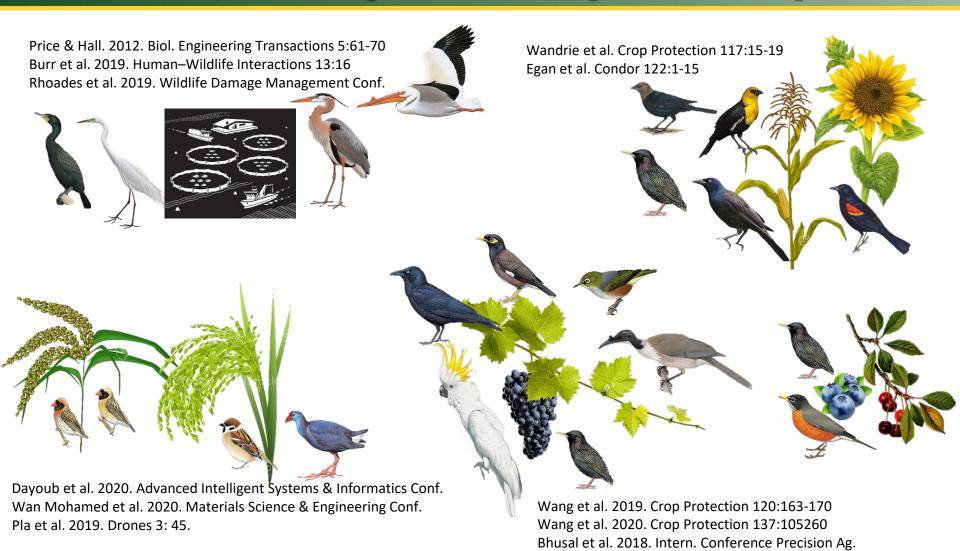
single roost >1 million blackbirds

Scale of Tool Implementation



Landscape

Region



United States Department of Agriculture Animal and Plant Health Inspection Service Wildlife Services – National Wildlife Research Center

Drones used in various agricultural settings for resource protection

Goel et al. 2017. ASABE Annual International Mtg.

Farmer Opinions on Current and Novel Tools

Tool efficacy ? Tool use

1997 Sunflower Grower Survey

in 1997.				
Bird Species	Kansas	Minnesota	North Dakota	South Dakota
7 - Lor L. 50)	1.1.1.11.	% of respo	ndents*	
Blackbirds	78.0	86.8	95.7	90.5
Sparrows	15.3	5.7	3.8	5.6
Other	68	7.5	0.5	4.0

Table 67. Bird species causing sunflower yield loss

bird damage in 1997.				
Bird Damage	Kansas	Minnesota	North Dakota	South Dakota
% yield loss		· · · · % of resp	ndents	
0-5	68.0	71.2	54.0	60.0
5-10	24.0	20.3	25.5	25.0
10-25	4.0	8.5	14.9	10.7
25-50	4.0	0	4.7	2.1
50-100	0	0	0.9	2.1

Table 66. Estimated sunflower yield loss due to

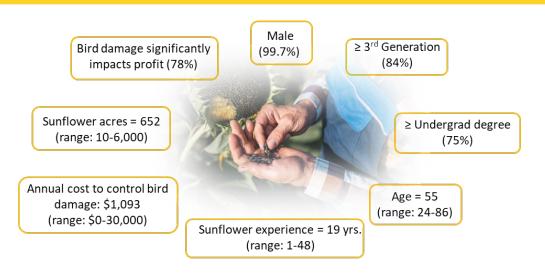
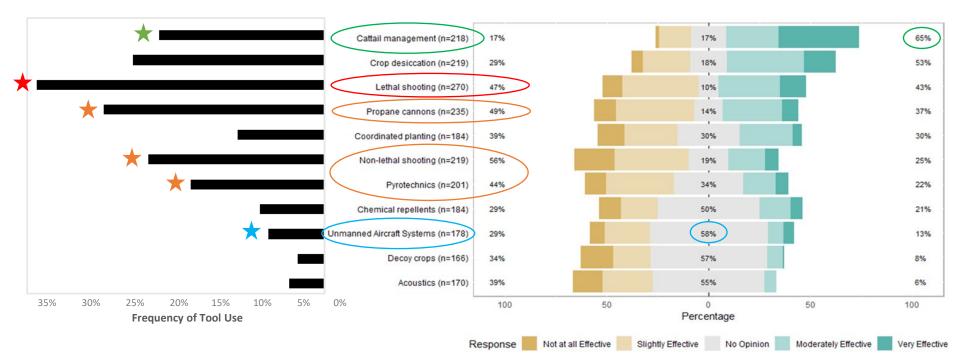

Control Method	Kansas	Minnesota	North Dakota	South Dakota
		- amount spent	er responden	t
Cattails	\$0	- \$0	\$515	\$0
Exploder	\$0	\$10	\$171	\$547
Gasoline	\$0	\$20	\$87	\$110
Shells	\$48	\$162	\$134	\$104
Hours	3	17	37	111

Table 60 Dird control conta per recognisting

- 1. What are producers' perceptions of tools frequency of use?
- 2. How willing are producers to allow drones on their property?
- 3. What factors influence their level of willingness?
- 4. How is their willingness to spend influenced by other factors?

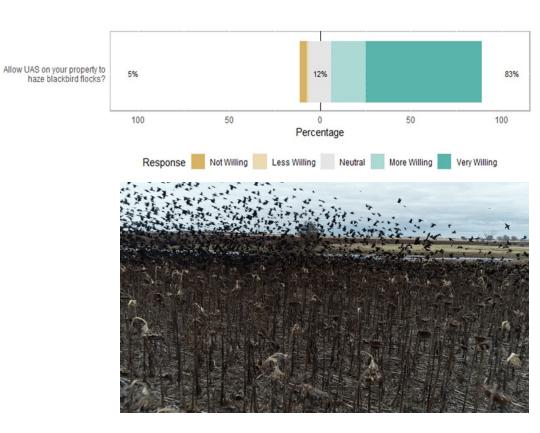
Bird Damage: A Survey of Sunflower Producers

National Sunflower
Association list


Surveys Mailed:

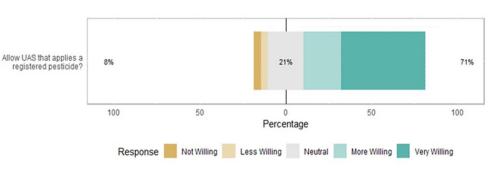
ND = 7,346

SD = 2,568


Responses = 1,065 (2020 growers = 343) 11.4% response rate

Farmers (83%) open to allowing drones to haze blackbirds

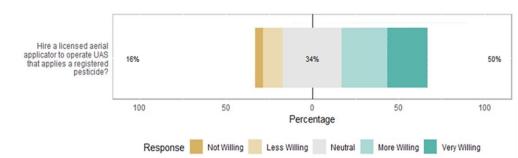
Dependent variable	Allow UAS to haze blackbirds (Q1)		
Independent variable	Coefficient ± SE	OR	
- Age	-0.056 ± 0.013***	0.945	
Education ^a			
\geq College	0.073 ± 0.453	1.076	
Sunflower experience	0.035 ± 0.022	1.036	
Impact on profit b			
Medium	1.012 ± 0.329***	2.750	
► High	0.624 ± 0.204***	1.867	
Yield lost to birds (%)	0.016 ± 0.020	1.017	
- Generation	-0.843 ± 0.203***	0.430	
Sunflower acreage	<-0.001 ± <0.001	0.999	
Maximum cost	<0.001 ± <0.001	1.000	
Management action taken	0.423 ± 0.393	1.526	
Prior UAS experience	0.781 ± 0.459*	2.184	
McFadden's Pseudo R ²	0.13		
$L.R.\chi^2$	29.91***		
N	208		



Farmers (71%) open to allowing drones to apply pesticide

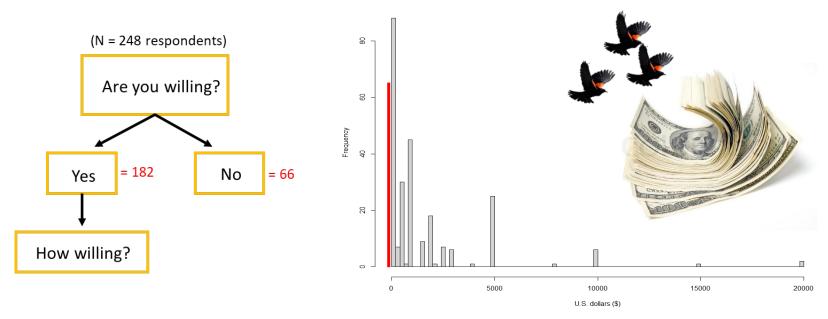
Dependent variable	Allow UAS to apply pesticide (Q2)	
Independent variable	Coefficient ± SE	OR
Age	0.004 ± 0.011	1.004
Education ^a		
→ ≥ College	0.656 ± 0.363*	1.928
Sunflower experience Impact on profit ^b	-0.002 ± 0.018	0.998
♦ Medium	0.630 ± 0.261**	1.877
High	0.235 ± 0.167	1.264
Yield lost to birds (%)	0.022 ± 0.016	1.022
- Generation	-0.291 ± 0.163*	0.747
Sunflower acreage	<-0.001 ± <0.001	0.999
Maximum cost	<0.001 ± <0.001	1.000
◆Management action taken	0.676 ± 0.318**	1.966
Prior UAS experience	0.545 ± 0.357	1.724
McFadden's Pseudo R ²	0.08	
$L.R.\chi^2$	26.10***	
_N	208	

^a reference category ≤high school, ^b reference category = low

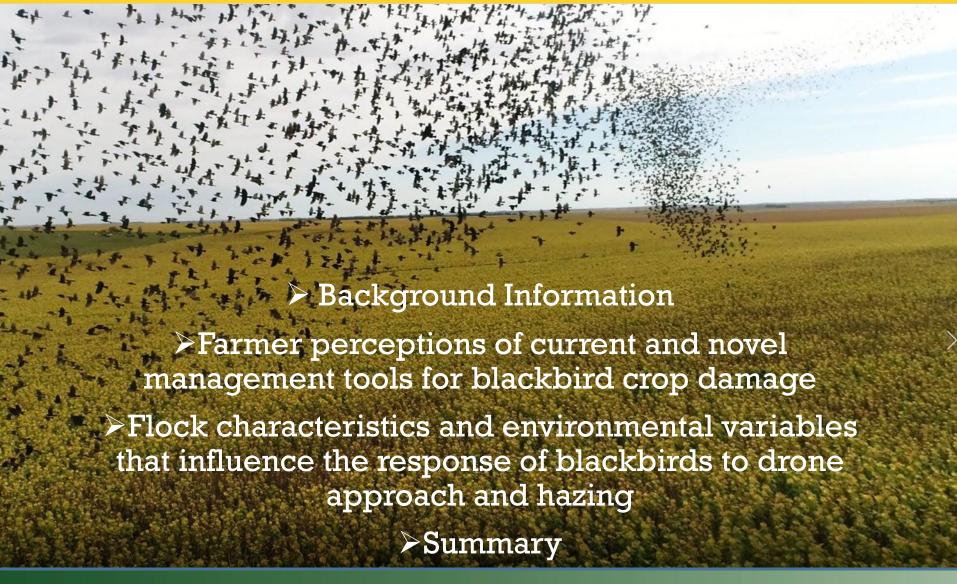


Farmers (50%) open to hiring pilot to apply pesticide by drone

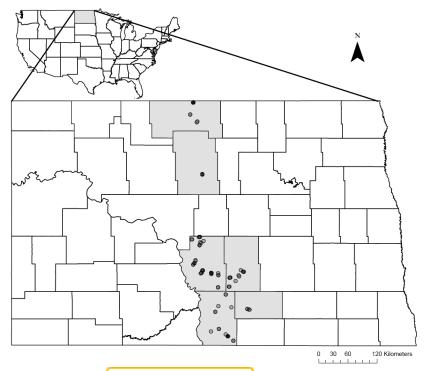
Dependent variable	Hire pilot to operate UAS and apply pesticide (Q4)	
Independent variable	Coefficient ± SE	OR
Age	0.008 ± 0.010	1.008
Education ^a		
\geq College	0.174 ± 0.319	1.190
Sunflower experience	0.002 ± 0.016	1.002
Impact on profit b		
Medium	0.107 ± 0.374	1.113
High	0.060 ± 0.523	1.062
Yield lost to birds (%)	0.013 ± 0.015	1.013
Generation	0.224 ± 0.140	1.251
Sunflower acreage	<0.001 ±<0.001	1.000
Maximum cost	<0.001 ± <0.001**	1.000
Management action taken	0.788 ± 0.319**	2.198
Prior UAS experience	0.577 ± 0.297*	1.780
McFadden's Pseudo R ²	0.08	
$L.R.\chi^2$	33.02***	
N	207	
$***p \le 0.01, **p \le 0.05, *p \le 0.1$		



^a reference category ≤high scho


Willingness-to-pay related to impact on profit, past actions, age, and acreage

	Participation(yes/no)	Willingness-To-Pay (\$ - \$\$\$)
Covariates	Coefficient ± S.E.	Coefficient ± S.E.
Age	-0.007 ± 0.018	-0.022 ± 0.010**
Education	0.280 ± 0.367	-0.152 ± 0.191
Sunflower growing experience	0.027 ± 0.019	0.004 ± 0.011
Yield lost to birds (%)	0.022 ± 0.017	0.002 ± 0.008
Impact on profit	0.549 ± 0.333*	$0.336 \pm 0.175*$
Generation	-0.001 ± 0.261	-0.075 ± 0.126
Acreage in sunflower	<-0.001 ± 0.001	<0.001 ± <0.001***
Management action	$2.017 \pm 0.365***$	0.295 ± 0.214
Log psuedolikelihood	-1,436 (df = 19)	_
n	215	
Wald χ^2 (df = 7)	68.6***	
***n <0.01 **n <0.05 *n <0.10		



Outline

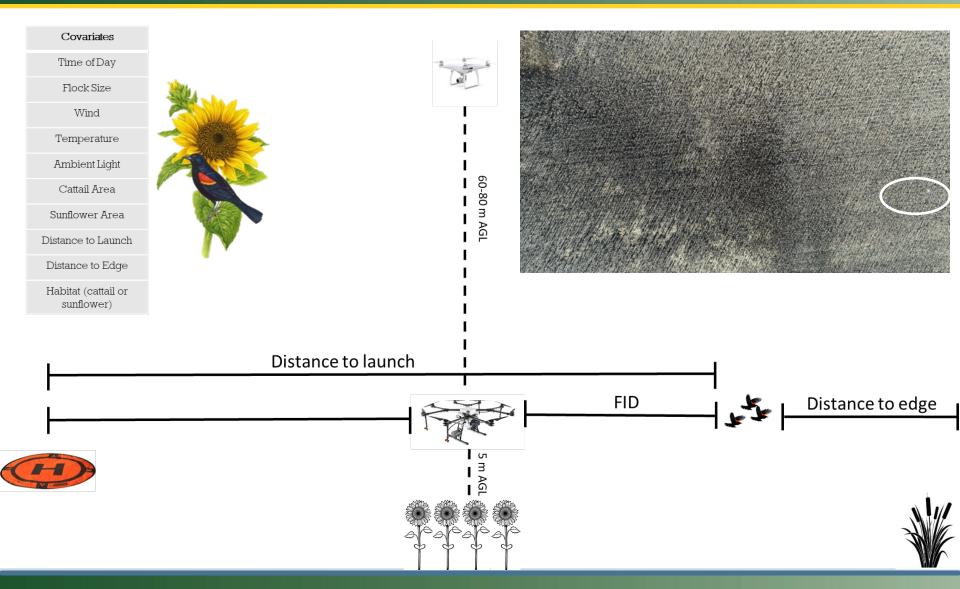
95 UAS trials across ND (Sept to Oct 2019-20)

Time: 7:30 am - 6:40 pm

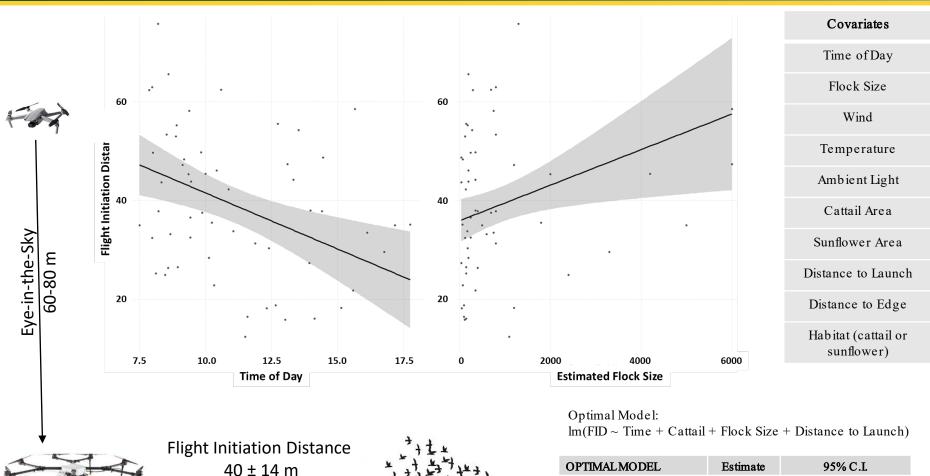
Avg. Flock size: 898 (range: 25 - 6,000)

> Avg. FID: 39 m (range: 12 - 76)

Avg. Field size: 187 ac (range: 11 – 600)


Avg. DTL: 245 m (range: 90 – 665)

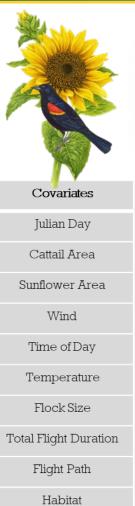
Avg. Temperature: 9°C (range: -3 - 28)



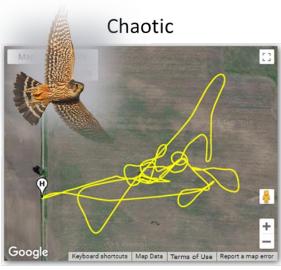
What variables influence the flock's response to UAS approach?

Time of day & flock size influence flight initiation distance (FID)

OPTIMALMODEL	Estimate	95% C.I.
Time	-2.267	-3.638, -0.895
Cattail acreage	-0.147	-0.344, 0.051
Flock size	0.004	0.001, 0.006
Distance to Launch (DTL) (DTL)	-0.025	-0.056, 0.007



What variables influence the flock's response to UAS hazing?



Success = Flock abandoned the habitat they were in prior to UAS approach



Herding

Time of day & flock size influence field abandonment (hazing)

Covariates
Julian Day
Cattail Area
Sunflower Area
Wind
Time of Day
Temperature
Flock Size
Total Flight Duration
Flight Path
Habitat

p < 0.001

Before Observation Period

After

52% of flocks abandoned

Average flock size reduction of 13.4%

81% of flocks returned within 15 min

Optima	Model:
glm(Suc	ess ~ Time + Flock Size + Temp)

OPTIMALMODEL	Estimate	95% C.L
Time	0.558	0.241, 0.951
Temperature	-0.098	-0.209, 0.002
Flock size	-0.001	-0.002, -0.0004

Farmers are willing to try UAS, even with low perceived efficacy

Some producers aren't willing to pay anything towards prevention

Identifying early adopters is important for novel tools

Although 52% of flocks abandoned during 10 min of hazing, 90% returned within 15 min with 14% reduction in flock size

Drone hazing in agriculture settings influenced by flock size, time of day, field size

Efficacy of drones may be improved with longer hazing duration, added negative stimuli, or deployment early in the season when flocks are small and establishing feeding areas

Thank You!

National Sunflower Association

John Sandbakken, Board of Directors, and sunflower producers

NDSU Biological Sciences

Dr. Tim Greives, Mallory White, Morgan Donaldson, Conor Egan, Lucas Wandrie, Allison Schumacher, Jessica Duttenhefner, Isaac Carbajal, Emily Kotten

USDA-APHIS-WS NWRC

Dr. George Linz, Dr. Bryan Kluever, June Weisbeck

USDA-APHIS-WS North Dakota

John Paulson and field staff

North Dakota State University

