Thermal biology and adult emergence of the red sunflower seed weevil, *Smicronyx fulvus* LeConte

Shawna Pantzke

Jarrad Prasifka, Beth Ferguson, Deirdre Prischmann-Voldseth, Joseph Rinehart

North Dakota State University

Department of Entomology

Red Sunflower Seed Weevil Smicronyx fulvus LeConte

- #1 seed feeding pest in NSA survey (2017, 2019)
- Eggs laid inside achenes, reduce oil content
- Reliance on insecticides
- One generation per year
- Overwinter in soil
- Highest mortality in soil?

Red Sunflower Seed Weevil

- Circles % of damaged seed
- Triangles fields with no damage
- 2017 seed weevil,
 83% of damaged seed
- 2019 seed weevil,
 75% of damaged seed

1	2	3	4	5	6	7	8	9	10	11	12
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
overwinter in soil as larvae	overwinter in soil as larvae	overwinter in soil as larvae	soil thaws, break diapause	soil thaws, pupation starts	pupation	emerge as adults, lay eggs	emerge as adults, lay eggs	developing larvae feed on seed, exit head	larvae exit head, start overwintering	overwinter in soil	overwinter in soil

Emerged Adults & Sunflower Bloom Date

Objectives

1) Determine adult emergence dates

2) Determine the freezing point of larvae

3) Determine soil depth of larvae during the winter

Understanding of overwintering mortality

Methods – Adult Emergence

- Weevil larvae in the field in September
- Overwinter in the field, traps put out in May
- Traps monitored for first emergence
- Adults collected and counted by date and trap

Adult Seed Weevil Emergence, 2021

Methods – Freezing Point

- Collection of weevil adults
- Artificial infestation in field plot
- Collection of larvae
- Cold storage indoors
- Freezing: November, January, April, June

Red Sunflower Seed Weevil Freezing Point

Fargo Soil Temperature, 5cm

Methods – Overwintering Depth

- Weevil larvae in the field in September
- Overwinter in the field
 - November, January, April, June
- Larvae collected and counted every 2cm
- Contingency table

Overwintering Depth by Month, 2020-21

Conclusions

- RSSW larvae freeze at ≈ -21°C (-5.8°F)
 Soil min. -15°C
- Overwinter 0-6cm (91.6%)
- Mortality between Jan/Apr
 - Sublethal temperature exposure
 - Shallow larvae vulnerable
- Adults emerged over a two-week period
 - 50% by July 9: sun
 - 50% by July 14: shade
- Wild caught adults in ND appeared 10-14 days later
- Developmental Threshold, $\sim 16^{\circ}C$

Future Work

- Degree-day model
 emergence, developmental threshold
- Planting date demonstration

Acknowledgements

Funding

National Sunflower Association

Committee

Jarrad Prasifka Deirdre Prischmann-Voldseth Joseph Rinehart Mark Boetel

Beth Ferguson

