2021 Progress for enhancing rust resistance in confection sunflower production through next-generation technologies

Guojia Ma¹, Xuehui Li^{1,} Lili Qi²

¹NDSU, Dept. of Plant Sciences ²USDA-ARS, Northern Crop Science Laboratory

Main causal organism: fungus Puccinia helianthi

Greenhouse Screening

R

S

Field Screening

R

S

Rust threats sunflower production

- One of the most serious diseases of sunflower in the world with an increasing importance in North America in recent years
- Number of North American (NA) rust races identified currently: 38
- Control: Registered fungicides and host resistance
- Using of resistant hybrids is most effective management tool (economic & environmental)

Genetics of rust resistance in sunflower

- Single dominant genes in sunflower control rust resistance
- A total of 17 rust resistance (R) genes have been discovered in sunflower
- New rust races make current R genes ineffective
 - Out of 17 rust R genes, 7 (R₁₁, R₁₂, R_{13a}, R_{13b}, and R₁₄-R₁₆) remain effective to all rust races

Research objectives (2020-2022)

- Stack effective rust R genes to generate multi-disease resistant lines
- Construct high density SNP genetic maps of R_{13a} , R_{12} , and R_{15}
- Develop diagnostic molecular markers for three genes
- Identify candidate genes associated with rust resistance in the sunflower genome

Research objectives (2021)

- Continue to stack effective rust R genes to generate lines with improved rust resistance
- Complete fine mapping of R_{13a}
- Develop diagnostic markers for R_{13a}
- Identify candidate genes of R_{13a}
- Saturation mapping of R_{12}

R genes stack

Fine mapping of R_{13a}

- 2020: whole genome sequence of HA-R6 (R_{13a}); tested 432 SNP markers; mapped 7 SNPs to the gene target region, which cosegregated with R_{13a}
- 2021: fine mapping of R_{13a}
 - Two markers were used to screen recombinants from 2,820 individuals of a large population
 - > Identified 312 recombinants
 - Evaluated rust resistance of R_{13a} recombinant families
 - > Genotyped R_{13a} recombinants

Table 1 Summary of R_{13a} fine mapping results

Marker	No. recombination	Genetic distance (cM)	Physical position on XRQr1.0 assembly (bp)
SFW01497	0	0	<mark>193089467</mark> -193089349
C13_194268343	30	0.5319	194268143-194268543
C13_194735854	5	0.0887	194735654-194736054
C13_194757055	4	0.0709	<mark>194756855</mark> -194757255
R _{13a}	7	0.1241	-
<i>C</i> 13_195501970	20	0.3546	195501770- <mark>195502170</mark>
C13_195522913	0	0.0000	195522713-195523113
C13_195526945	0	0.0000	195526745-195527145
C13_195556768	0	0.0000	195556568-195556968
<mark>SFW04275</mark>	21	0.3723	196464687- <mark>196464768</mark>
SFW04317	1	0.0177	196474077-196473983
SFW05743	4	0.0709	196521145-196521026
HT382	106	1.8794	-

Reducing R_{13a} interval from 3.5 Mb to 0.745 Mb

Fine mapping of R_{16}

• R_{16} in TX16R germplasm line and mapped to the same region as R_{13a}

LG13

- Saturation mapping of R₁₆
 - > TX16R (R₁₆) was sequenced at 40x genome coverage
 - Selected a total of 432 SNPs from TX16R (R₁₆) and HA-R6 (R_{13a}) whole genome sequences
 - Screened the parents of HA 434 and TX16R
 - Mapped 16 SNPs to the R₁₆ target region

• Fine mapping of R_{16}

- Two flanking markers were used to screen recombinants from 2,256 individuals of a large population
- > Identified 203 recombinants
- Evaluated rust resistance of the R₁₆ recombinant families
- > Genotyped the R_{16} recombinants

Table 2 Summary of R_{16} fine mapping results

Marker	No. recombination	Genetic distance (cM)	Physical position on XRQr1.0 assembly (bp)
OR5316	0	0	-
<mark>SFW8875</mark>	110	2.4379	<mark>193131235</mark> -193131123
C13_194722668	43	0.9530	<mark>194722468</mark> -194722868
R ₁₆	8	0.1773	-
C13_195512786	6	0.1330	195512586- <mark>195512986</mark>
C13_195552917	0	0.0000	195552717-195553117
C13_195605372	0	0.0000	195605172-195605572
<i>C</i> 13_195836770	7	0.1551	195836570-195836970
C13_195840634	0	0.0000	195840434-195840834
C13_195874138	0	0.0000	195873938-195874338
<mark>SFW05743</mark>	31	0.6871	196521145- <mark>196521026</mark>

Reducing R₁₆ interval from 3.5 Mb to 0.79 Mb

Marker specificity test of R_{13a} and R_{16}

A total of 16 SNP markers mapped to 3.5 Mb region were selected to test eight lines, including two susceptible lines, HA 89 and HA 434, and six resistant lines

LG13

HA 89 HA 434 R_{13a} -HA-R6 R_{13b} -RHA397 R_{1b} -RHA397 R_{1b} -RHA397 R_{1b} -HA-R16 R_{17} -HA-R19 R_{18} -HA-R19

C13_19428343: R_{13a} shares the marker allele with R_{13b}

C13_195501970: R_{13a} shares the marker allele with R_{16} , R_4 , and R_{18}

C13_195874538: distinguishing R_{16} from all genes in the cluster

Ten SNP markers were selected to test 96 sunflower lines, and only $C13_194722668$ can distinguish R_{16} from all other lines

Candidate genes for R_{13a} and R_{16}

LG13

	Physical po	sition (bp)	Lentoh	
Gene name	Start	End	(bp)	Description
HanXRQChr13g0425851	194725998	194753531	27534	Putative NB-ARC
HanXRQChr13g0425891	194800201	194803684	3484	Putative NB-ARC
HanXRQChr13g0425931	195196820	195210745	13926	Putative NB-ARC
HanXRQChr13g0425941	195250038	195252703	2666	Putative NB-ARC

Saturation mapping of R_{12}

SSR marker development

- Extracted 3.5 Mb sequence covering R₁₂ from the reference genome of HA412-HO
- Designed 58 pairs of SSR primers from the sequence
- Screened the polymorphism between HA 89/RHA 464 (R₁₂)
- Genotyped 140 F₂ individuals with 6 polymorphic markers

SNP marker development

- Sequenced RHA 464 (R₁₂) with 40x genome coverage
- Called SNPs and InDels from the XRQ and HA412-HO genome sequences.
- Selected 186 SNPs from the gene target region
- Screened the polymorphism between HA 89/RHA 464 (R₁₂)
- Genotyped 140 F₂ individuals with 52 polymorphic markers
- > Finally, 4 SSR and 44 SNP markers were mapped to the R_{12} target region.

Future work (2022)

- Complete fine mapping of R_{12}
- Test and validate diagnostic markers for R_{12}
- Identify candidate genes of R_{12}
- Prepare manuscript
- Saturation and fine mapping of R_{15}
- Release the germplasms resistant to rust and downy mildew

Acknowledgements

- Angelia Hogness (USDA-ARS, NCSL)
- Dr. Zahirul Talukder (NDSU/USDA-ARS, NCSL)
- Dr. Md Shamimuzzaman (USDA-ARS, NCSL)
- Dr. Qijian Song (USDA-ARS, BARC)

Financial Support

- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS
- ND Department of Agriculture

Thank you