GREENHOUSE ASSESSMENT OF SENSITIVITY OF PHOMOPSIS SPECIES TO TEBUCONAZOLE FUNGICIDE

Karthika Mohan¹, Nathan Braun¹, Samuel Markell², Robert Harveson³ and Febina Mathew¹

¹Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD

²Department of Plant Pathology, North Dakota State University, Fargo, ND;

³Department of Plant Pathology, University of Nebraska-Lincoln, Scottsbluff, NE

South Dakota State University

College of Agriculture, Food and Environmental Sciences

OUTLINE

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

INTRODUCTION

MANAGEMENT STRATEGIES

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

Demethylation inhibitors (DMI) is one of the three foliar fungicide groups labelled on sunflower

Also, used on crops rotated with sunflower

Inhibits fungal cell membrane development by preventing ergosterol biosynthesis (Brent and Holloman 2007)

Have a broad spectrum of activity against fungal pathogens (Thomas et al. 2012)

OUTH DAKOTA TATE UNIVERSITY ollege of Agriculture, Food nd Environmental Sciences

RISK OF FUNGICIDE RESISTANCE

An acquired, heritable reduction in sensitivity of a fungus to a specific anti-fungal agent (or fungicide). (FRAC 2021)

Many cases of resistance to DMI fungicides documented in fungi (Erickson and Wilcox 1997; Fraaiji et al. 2007; Ghosoph et al. 2007; Omrane et al. 2015)

ουτη Dakot*i*

HOW RESISTANCE DEVELOPS?

In order to prevent or slow the development of fungicide resistance, it is important to first understand the two sets of factors that affect its development: those associated with the pathogen (i.e. genetic diversity) and those associated with the fungicide (i.e. mode of action).

Because these factors together can aid in the development of fungicide resistance, it is important to **apply fungicides only when necessary** and **rotate fungicide MOAs with each application**.

Technical editing for this piece was completed by Carl Bradley, Ph.D., University of Kentucky; Daren Mueller, Ph.D., Iowa State University; and Kiersten Wise, Ph.D., Purdue University. Brought to you by the soy checkoff. 🎸

www.IWillTakeAction.com

South Dakota

DMIS & QUANTITATIVE RESISTANCE

QUANTITATIVE RESISTANCE BUILD-UP

Quantitative resistance: Pathogen population with a range of sensitivity shifting to insensitive over time. (Modified from Hewitt, 1998)

JUSTIFICATION

In vitro study by Kashyap et al. (2022) suggests possible resistance to tebuconazole in fungi

Further experiments needed to confirm resistance development

To develop effective management strategies to avoid yield loss from fungicide failure

(Brent and Hollomon 2007)

DUTH DAKOTA CATE UNIVERSITY lege of Agriculture, Food d Environmental Sciences

RESEARCH OBJECTIVES

1. Determine the cross-sensitivity of isolates of *D. gulyae* and *D. helianthi* between tebuconazole and prothioconazole fungicides

2. Determine the sensitivity of the two fungi to tebuconazole under greenhouse conditions

South Dakota State University

College of Agriculture, Food and Environmental Sciences

METHODOLOGY 1

1. Selection of Isolates

- From study by Kashyap et al. (2022) 21 isolates of *D.* gulyae and 13 isolates of *D. helianthi* suspected to have reduced sensitivity to tebuconazole
- Selected 20 isolates (baseline included) each of D.gulyae and D. helianthi
- Different locations
- EC₅₀ significantly greater and lower than the baseline isolates

2. In vitro assay

Media: Water Agar amended with different fungicide concentrations (Kashyap et al. 2022)

Prothiaconazole	0	0.01	0.02	0.04	0.2	1	5	20
(µg a.i./ml)								

Completely randomized design with four plates (replications) for each fungicide concentration

Experiment replicated once

3. Test for Normality and Homogeneity of Variance

Normality -Shapiro-Wilk test

Homogeneity of variance- Levene's test

	Shapiro-Wilk test	Levene's test
D. gulyae	<i>p</i> < 0.0001	<i>p</i> < 0.10
D. helianthi	<i>p</i> < 0.0001	p > 0.58

♦ Data distribution is not normal (α =0.05)

Variances between experiments were homogenous

3. Percent Inhibition of Mycelial growth

Where: *dc* – average diameter of fungal colony in control *dt* – average diameter of fungal colony in treatment

4. Calculation of EC₅₀

Fungicide concentrations and mycelial growth inhibitions were used to calculate EC_{50} using non-linear regression (Effective concentration inhibiting fungal growth by half)

$$Y = E_0 + \frac{(E_{max} - E_0)}{1 + \left(\frac{\text{concentration}}{EC_{50}}\right)^{Hill's \ coefficient}}$$

- Y = expected response at a given fungicide concentration
- E_{max} and E₀ are the responses at maximum and zero fungicide concentration, respectively
- EC₅₀ is halfway between maximum and minimum response
- Hill's coefficient is the slope of the curve

	ATS value	df	<i>p</i> value
D. gulyae	7.045	4.254	<i>p</i> < 0.0001
D. gelianthi	13.207	3.078	<i>p</i> < 0.0001

Significant differences in EC50 values (p<0.0001) were observed among the isolates of *D. gulyae* and *D. helianthi* with a mean EC50 value of 0.6185 and 0.2355 ug/ml of prothioconazole

	Correlation coefficient	<i>p</i> value
D. gulyae	0.52	0.017
D. helianthi	- 0.17	0.46

- Significant correlation between EC₅₀ values of tebuconazole and prothioconazole fungicides – *D. gulyae*
- No significant correlation between EC₅₀ values of tebuconazole and prothioconazole fungicides – *D. helianthi*

Five isolates of *D. gulyae* and seven isolates of *D. helianthi* had significantly greater EC50 (p<0.0001) than of the baseline isolate for prothioconazole fungicide

Significant correlation between EC₅₀ values of tebuconazole and prothioconazole fungicides for *D. gulyae* isolates

No significant correlation between EC_{50} values of tebuconazole and prothioconazole fungicides in the case of *D. helianthi* isolates

Generally, cross-resistance is present between fungicides active against the same fungus (FRAC 2021)

(Chen et al. 2012; Holb and Schnabel, 2007; Dutra et al. 2020)

METHODOLOGY 2

- Experimental design Completely Randomized Design
 - Two factors:
 - Isolates 10 isolates each of *D. gulyae and D. helianthi*
 - Commercial fungicide (Folicur) at field rates 4 fl oz/A,
 6 fl oz/A
 - Replication: six (plants) per experiment
 - Experiment repeated once
 - Susceptible hybrid N4HM354 (Nuseed Genetics)
 - Greenhouse temperature: 20 to 25°C

1. SELECTION OF ISOLATES

Isolate	Location	Isolate	Location
AU	Queensland, Australia	B2	Vukojevic, Yugoslavia
Dg 8	Divide, ND	B5	Texas, TX
Dg 4	Divide, ND	16	Cass, ND
Dg 67	Eddy, MN	2L	Brookings, SD
Dg 5	Divide, ND	AI2	Potter, SD
Dg 66	Roseau, MN	K2	Cass, ND
E7	Polk, MN	G6	Todd, MN
Dg 40	Hyde, SD	Y1	Polk, MN
X2	Foster, ND	L1	Brookings, SD
Dg 9	Burke, ND	Dh 27	Beltrami, MN

• From study by Kashyap et al. (2022)

- Randomly selected 10 isolates (baseline included)
- Different locations

2. FUNGICIDE SPRAYING

V4 – V6 growth stage

- Backpack sprayer (CO₂ pressurised)
- Nozzle type Flat fan (03Teejet size)
- 35 psi nozzle pressure
- Sprayed until run-off through stem
- 24 hrs for drying

3. INOCULATION

3rd or 4th internode

Placed on the fungicide sprayed area

Secured with Parafilm

4. OBSERVATION

- Disease rating scale (0 to 5) (Mathew et al. 2015)
- D. gulyae 5th day & D. helianthi 10th day

0: No discoloration

1: low level discoloration

3: necrotic lesions 2–5 mm, leaf wilting

5: very severe necrosis and lesions, or plant death

SOUTH DAKOTA STATE UNIVERSITY follege of Agriculture, Food and Environmental Science

5. ANALYSIS OF DATA

Normality -Shapiro-Wilk test Homogeneity of variance-Levene's test

R softwarenpar_LD

RESULTS AND DISCUSSION

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

NORMALITY, HOMOGENEITY OF VARIANCE TESTS

Diaporthe gulyae	Shapiro-Wilk test	<i>p</i> < 0.0001
Diaporthe gulyae	Levene's test	<i>p</i> > 0.1758
Diaporthe helianthi	Shapiro-Wilk test	<i>p</i> < 0.0001
Diaporthe helianthi	Levene's test	<i>p</i> > 0.1477

Data distribution is not normal

Variances between experiments were homogenous

NON-PARAMETRIC ANALYSIS

For the interaction (Isolate x fungicide concentration)

	ANOVA Type Statistics (ATS)	df	<i>p</i> value
Diaporthe gulyae	2.930	5.816	<i>p</i> < 0.0001
Diaporthe helianthi	3.301	5.447	<i>p</i> < 0.0001

OBSERVATION

RESISTANT

CONTROL

4 floz /A

6 floz /A

SENSITIVE

24floz /A

South Dakota STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

RELATIVE TREATMENT EFFECTS (RTE) – D. gulyae

For 30 (isolate x fungicide treatment) combinations

RESULTS

- 7 isolates (AU, Dg 5, Dg 8, Dg 66, Dg 67, E7 and Dg X2) insensitive at 4 fl oz/A and 6 fl oz/A
- 2 isolates (Dg 4 and Dg 40) insensitive at 4 fl oz/A but not at 6 fl oz/A
- One isolate (Dg 9) sensitive at both 4 floz/A and 6 floz/A

RELATIVE TREATMENT EFFECTS – *D. helianthi*

For 30 (isolate x fungicide treatment) combinations

RTE value: 0.22 to 0.79

Control - No fungicide Low - 4 fl oz/A High - 6 fl oz/A

- 8 isolates (2L, B5, G6, K2, L1, Y1, Al2, Dh27) insensitive at 4 fl oz/A and 6 fl oz/A
- One isolate (B2) insensitive at 4 fl oz/A but not at 6 fl oz/A
- One isolate (I6) sensitive at 4 fl oz/A and 6 fl oz/A

RESISTANCE DEVELOPMENT

SUMMARY AND IMPLICATIONS

This study confirms the insensitivity of *D. gulyae* and *D. helianthi* isolates to tebuconazole.

This study confirms that the field rate of tebuconazole may not be effective against Phomopsis stem canker.

Need to formulate measures to prevent yield loss due to fungicide failure

FUTURE LINE OF WORK

eae of Aariculture, Foo

REFERENCES

- Akritas, M.G. 1991. Limitations of the rank transform procedure: A study of repeated measures designs, Part I. J. Am. Stat. Assoc. 86:457-460.
- Anderson, N. R., Freije, A. N., Bergstrom, G. C., Bradley, C. A., Cowger, C., Faske, T., Hollier, C., Kleczewski, N., Padgett, G.B., Paul, P. and Price, T. 2020. Sensitivity of *Fusarium graminearum* to metconazole and tebuconazole fungicides before and after widespread use in wheat in the United States. Plant Health Prog. 21:85-90.
- Amiri, A., Heath, S. M. and Peres, N. A. 2014. Resistance to fluopyram, fluxapyroxad, and penthiopyrad in *Botrytis cinerea* from strawberry. Plant Dis. 98:532-539.
- Brent, K. J. and Hollomon, D. W. 2007. Fungicide resistance in crop pathogens: How can it be managed/ FRAC Monograph No. 1, 2nd Ed. CropLife International, Brussels, Belgium.
- Chen, F. P., Fan J. R., Zhou, T., Liu, X. L., Liu J. L. amd Schnabel, G. 2012. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI –resistant mutants. Plant Dis. 96: 416-422.
- Deising, H. B., Reimann, S. and Pascholati, S. F. 2008. Mechanisms and significance of fungicide resistance. Braz. J. Microbiol. 39:286-295.
- Dutra, P. S. S., Lichtemberg, P. S. F., Martinez, M. B., Michalilides, T. J., and Mio, L. L. M. D. 2020. Cross-resistance among Demethylayion Inhibitor Fungicides with Brazilian *Monilinia fructicola* isolates as a foundation to discuss Brown rot Control in stone fruits. Plant *Dis.* 104: 2843-2850.
- Elverson, T. R., Kontz, B. J., Markell, S. G., Harveson, R. M. and Mathew, F. M. 2020. Quantitative PCR Assays Developed for *Diaporthe helianthi* and *Diaporthe gulyae* for Phomopsis Stem Canker Diagnosis and Germplasm Screening in Sunflower (*Helianthus annuus*). Plant Dis. 104:793-800.
- FRAC (Fungicide Resistance Action Committee). 2021. FRAC Code List: Fungicides Sorted by Modes of Action. Available from: <u>www.frac.info</u>.
- Gadagkar, S.R. and Call, G.B., 2015. Computational tools for fitting the Hill equation to dose-response curves. J. Pharmacol. Toxicol. Methods. 71:68-76.
- Hajdu, F., Baumer, J. S., and Gulya, T. 1984. Occurrence of Phomopsis stem canker in Minnesota and North Dakota. Page 15 in: Proc. Sunflower Res. Workshop, Bismarck, ND.

REFERENCES

- Hulke, B. S., Markell, S. G., Kane, N. C., and Mathew, F. M. 2019. Phomopsis stem canker of sunflower in North America: Correlation with climate and solutions through breeding and management. OCL Oilseeds and Fats, Crops and Lipids, 26. https://doi.org/10.1051/ocl/2019011
- Holb, I. J. and Schnabel, G. 2007Differential effect of traizoles on mycelial growth and disease measurements of *Monilinia fructicola* isolates with reduced sensitivity to DMI fungicides. Can. J. Plant Pathol. 10: 311-316.
- Kaneko, I. and Ishii, H. 2009. Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens *Fusarium* graminearum and *Microdochium nivale*. J. Gen. Pl. Path. 75:388.
- Liang, H. J., Di, Y. L., Li, J. L. and Zhu, F. X. 2015. Baseline sensitivity and control efficacy of fluazinam against *Sclerotinia sclerotiorum*. Eur J. Plant Pathol. 142:691-699.
- Malidza, G., Vrbnicanin, S., Bozic, D. and Jocic, S. 2016. Integrated weed management in sunflower: challenges and opportunities. ISC 2016. 90.
- Mathew, F. M., Alananbeh, K. M., Jordahl, J. G., Meyer, S. M., Castlebury, L. A., Gulya, T. J., and Markell, S. G. 2015. Phomopsis stem canker: A reemerging threat to sunflower (*Helianthus annuus*) in the United States. Phytopathol. 105:990-997.
- Mathew, F., Olson, T., Marek, L., Gulya, T., and Markell, S. 2018. Identification of sunflower (*Helianthus annuus*) accessions resistant to *Diaporthe helianthi* and *Diaporthe gulyae*. Plant Health Prog. 19:97–102.
- Mihalj cevi c, M., Muntan ola-Cvetkovi c, M., Vukojevi c, J., and Petrov, M. 1985. Source of infection of sunflower plants by *Diaporthe helianthi* in Yugoslavia. Phytopathol. Z. 113:334-342.
- Noguchi, K., Gel, Y. R., Brummer, E., and Konietschke, F. 2012. nparD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. 50:1-23.
- Shah, D. A., and Madden, L. V. 2004. Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathol. 94:33-43.
- Shi, N., Ruan, H., Gan, L., Dai, Y., Yang, X., Du, Y. and Chen, F. 2020. Evaluating the sensitivities and efficacies of fungicides with different modes of action against *Phomopsis asparagi*. Plant. Dis. 104:448-454.
- Ziogas, B.N., Baldwin, B.C. and Young, J.E. 1997. Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in Septoria tritici. J. Pestic. Sci. 50:28-34.

ACKNOWLEDGEMENT

My lab: Nathan Braun Brian Kontz Nabin Dangal Renan Guidini Ruchika Kashyap Bijula Sureshbabu Dr. Shyam Solanki

Nebraska Lincoln

SOUTH DAKOTA STATE UNIVERSITY <u>College of Agriculture, Foo</u>

and Environmental Science

THANK YOU