Green and Brown Bridges of crop and weed residues aid survival of new pathogenic *Phomopsis/Diaporthe* spp. from sunflower, soybean and other crops and weeds in Australia.

Dr Sue Thompson^{1,3}, Prof Stephen Neate^{1,4}, Prof Roger Shivas^{1,2}, Dr Yu Pei Tan², Prof Liz Aitken³

> ¹University of Southern Queensland, Toowoomba, Australia (Ret). ²DAF, Biosecurity Qld, Ecosciences Precinct, Brisbane, Australia. ³University of Queensland, St Lucia, Brisbane, Australia. ⁴University of Adelaide, South Australia

Grains Research & Development Corporation

NSA Reseach Forum .

Jan 14, 2021

- GRDC funded *Project 000186:* Diseases of broadacre summer crops of the GRDC Northern Region
- USQ Toowoomba, Australia.
- *R&D, Extension, Diagnostics*
- <u>Sunflower</u>, <u>soybeans</u>, sorghum, mungbeans, chickpeas, maize.

PhD component - Phomopsis/Diaporthe spp

- ID of causal spp., Survival on stubble, Identification of alternative hosts.; Management strategies
- <u>Sue Thompson</u> Aus Sunflower Assoc Comm; US Sunflower Pathology Group
- Roger Shivas Mycology, Taxonomy, PhD supervisor DAFQ
- Yu Pei Tan Molecular Analyses
- Stephen Neate PhD supervisor USQ
- Liz Aitken PhD supervisor UQ

Down under.....

Sunflower and soybean production areas

30+ yrs of Zero and Min Till – the upside.....

- Home for beneficial insects
- Moisture savings </
- Energy savings ✓✓
- Compaction reduction $\checkmark\checkmark$
- Possible nematode suppression ✓
- Possible disease suppression ✓
- Weed control (herbicides) stubble can inhibit emergence

Zero and Min Till – the downside....

- Herbicide resistance x Environmental concerns x
- Protection for insect pests eg. Lucerne Crown Borer x
- Protection and increased survival for multiple pathogens x
- Pathogens aided by stubble:
- Phomopsis stem and pod cankers (*Diaporthe* spp.) - sunflower, soybean, lupin, grapevine, citrus
- Sclerotinia minor, S. sclerotiorum, Athelia rolfsii – 200+ hosts
- *Fusarium* spp. sorghum stalk rot, corn cob rot, wheat crown rot, cotton root rot
- *Macrophomina phaseolina* charcoal rot of soybeans, sorghum, sunflower

Introducing Sam Markell to *A rolfsii* in Aus

Genus Diaporthe , a case study of survival on green and

brown bridges.....

- Wide host range: saprobes, endophytes, pathogens
- Woody shrubs, woody weeds, <u>broadacre crops</u> <u>soybean, sunflower, grapes;</u> tree crops - junipers, peach, plum, rooibos; weeds- saffron thistle, burrs
- Sunflower: Phomopsis Stem Canker PSC
- Soybean: Phomopsis Pod and Stem Blight, Stem Canker
- *Phomopsis* sp. name given to the anamorph, asexual state

Diaporthe sp. - name given to the teleomorph, sexual state

•One Fungus – One Name

International Code for Botanical Nomenclature

Perithecia of a *Diaporthe* sp.

Pycnidia of *D gulyae* on seed

*This Australian green and brown bridge story – started with the first PSC outbreak on sunflower in 2009/10**

•Symptoms and host based ID — *D. helianthi? Exotic to Aus.*

- Causal pathogen (s) of the Australian outbreak?
- Where did it come from?

Lodging and lesions typical of Phomopsis Stem Canker

Step 1. ID the pathogen(s) from sunflower and other isolates

- Three-pronged diagnostic approach
- Morphological characterisation
- Molecular phylogeny *eg* ITS, Tef-1^{α}, BT, CAL, others
- Followed by pathogenicity testing on selected crops and weeds

Pathogenicity testing of isolates associated with sunflower.....

Start with sunflower and other <u>crops</u> in the rotation.... Green bridges or potential hosts? Also, test isolates on weeds.

Sunflower

Mungbean

Chickpea

Soybean

Early results – three new Diaporthe species* on sunflower:

• **D. gulyae (**RG Shivas, SM Thompson & AJ Young) Most damaging species..... *Virulence Rating 5

D. kongii (RG Shivas, SM Thompson & AJ Young)

D. kochmanii (RG Shivas, SM Thompson & AJ Young), (syn. D. sojae)

ID based on host no longer valid for *Diaporthe* spp. on sunflower virulent species on sunflower not D helianthi.

- New molecular technologies are revealing previous errors in identification of species, a multitude of undescribed species
- Finding a new species and host associations is just the beginning...... 'associated with' does not mean 'pathogen of'.

*Thompson et al. 2011. Persoonia 27:80-89

Step 2. Where did it come from? Brown bridges?

Survival on sunflower stubble +29mths

Stubble washed across paddock

Viable pycnidia on crop and weed stubble

<u>Step 2. Live</u> weeds as alternative hosts/ green bridges?

Carthamus lanatus (Saffron Thistle), Ash et. al. 2009) Xanthium strumarium (noogoora bur): molecular, path testing Australia D. gulyae

Noogoora Bur*Xanthium strumarium* Lesions and developing fruiting bodies

Diaporthe spp on other weedslive (green) and dead (brown) bridges?

Turnip Weed Rapistrum rugostrum alongside a sunflower nursery.

Live plant, black lesion - D. kongii; Dead plants – D. kongii plus multiple Diaporthe spp.

Where did it come from? Lodging site 1, Qld

- 20+ years no sunflowers grown
- Lesions at flowering
- Lodging in patches as heads filled

Which species?

Sunflower IDs – D. gulyae, D. novem , D. ambigua, D. masirevicii

*Thompson et al. 2018

Investigation of the live weeds at the site...

Sunflower : D. gulyae, D. novem , D. ambigua, D. masirevicii

<u>Weeds:</u> <u>Malva parviflora</u> (small flowered mallow) – <u>D. novem</u> (tip dieback), <u>Sochus oleraceus</u> (sow thistle, stem), noogoora bur (stem), <u>Bidens pilosa</u> (cobblers peg, stem).....<u>D. gulyae</u>

Green and brown bridges.....site 2, Ryeford. Qld

Sunflower crop – *D. gulyae*

- Sunflower stubble *D. gulyae, D. masirevicii*
- Sesbania, live, tip dieback *D. gulyae, D. sojae (syn D kochmanii)*
- Sesbania stubble D. masirevicii
- Noogoora bur live, stem lesions D. gulyae
- Datura sp (thornapple) stubble *D. gulyae*
- Misc stubble *D. masirevicii, other spp.*

Sesbania tip dieback

Site 3. Brown bridges...Caroona NSW

Live sunflower, previous crop: *D. gulya*

Sunflower stubble: *D. gulyae*

Noogoora Bur stubble: D. gulyae

Wild sunflower stubble: *D. gulyae*

Site 4 - Moree, Northern NSW

Live: *V sativa* (vetch) – *D novem, D leucospermi* Stubble: *Vicia faba, X strumarium, H annuus* (wild) – *D gulyae*

Isolates from this site were pathogenic on chickpea mungbean, soybean, sunflower, lupin ...

To support pathogenicity test results by inducing natural infection, a green bridge - alternative crop host trial 1, 2014

Natural infection, green bridge trial 2, Qld 2015

An additional outcome – a further eight neveration outcome – a further eight never to honour to honour signis.

- D. charlesworthii.....
- D. goulteri
- D. macintoshii...
- D. masirevicii
- D. middletonii
- D. miriciae
- D. sackstonii
- D. serafiniae

Summary: 14 *Diaporthe* spp. <u>associated with</u> sunflower in Australia....

<u>Associated with:</u> the species is isolated from plant parts of dead and/or live sunflower plants.

Saprobe, endophyte, pathogen

<u>'associated with'</u> does NOT mean '<u>pathogenic on'</u>

<u>Pathogenic:</u> the species can infect/colonise plant tissues, cause necrosis, eg. a lesion

<u>Virulence:</u> the severity of infection.... eg. lesion length. *severity rating 1-5

(*Thompson et al. 2011, Brumpton Thompson 2020)

Examples of Diaporthe sp x crop assoc....

Diaporthe gulyae *- identified as a highly virulent pathogen of multiple crops and weeds

- **<u>Associated with</u> 6 crops sunflower, soybean, sorghum, mungbean, maize and fababean
- **<u>Associated with</u> 15 weeds
- **<u>Pathogenic</u> (potential pathogen): sunflower, soybean, mungbean, chickpea, peanut, lupin, safflower, canola, noogoora bur, gooseberry, sow thistle, wild sunflower

* Thompson et al. 2011. **Papers published and/or in prep; Brumpton Thompson 2020 *D. gulyae* on sorghum seed, sunflower stem and mungbean stem

Diaporthe novem*.....

- Recorded in Europe on sunflower and soybean
- One of 14 species identified on sunflower in Australia
- 16 host associations including:
 - Sunflower stem, live
- Soybean step live
- Lupin stem, mature
- Sesbania cannabina tip dieback
- Sorghum bicolor seed

A. D. gulyae

B. *D. novem*

***Pathogenic on sunflower, soybean, mungbean, chickpea, lupin, the weed *Physalis* sp. - a broad ranging potential crop pathogen.

• Majority are first records *Thompson et al. 2018; ** papers in prep

Stem slit inoculations – a harsh test, so consider the results with the biology of the *Diaporthe* genus in mind opportunistic colonisation

Virulence ratings = degree of severity of infection

Rating	Pathogenicity, virulence
1	Not pathogenic
2	Not pathogenic, or pathogenic with low virulence, or latent
3	Pathogenic, moderate virulence
4	Pathogenic, high virulence
5	Pathogenic, very high virulence

Diaporthe species virulence on selected crops

	Сгоря							
	Peanut Arachis hypogaea	Chickpea Cicer arietinum	Fababean <i>Vicia faba</i>	Maize Zea mays	Mungbean Vicia radiata	Sorghum Sorghum bicolor	oybeal Gycine ma	Suphowe. Helia/thus annuvs
Diaporthe spp.								×
ambigua					x		x	^
aspalathi	x				^		*	λ
charlesworthii	x							
goulteri								x
gulyae			stubble	leaf	stem, petiole	seed	stem, seed	base, stem, leaf, capitulum, seed
infecunda			stubble		x	seed		
kongii	x	x		leaf	x		x	×
leucospermi		x			x			
longicolla							x	
masirevicii	x			leaf	x		x	×
micheliae							x	
middletonii		x			x		x	
novem		x	stubble		x	seed	x	stem
sackstonii		x			x		x	x
serafiniae		x						x
sojae syn. kochmanii							x	x
					x	seed	x	x
ueckeri syn. miriciae	X	x						
					x		x	
Diaporthe oppmov. 15-51	x	x						
	5	8	3	3	14	4	14	14

Some Diaporthe spp associated with a selection of weeds in Australia

	Abutilon sp		Circium vulgare	Datura stramonium	Helianthus annuus	Hibiscus trionum		Malva parviflora	Physalis sp		Sonchus oleraceus	Xanthium strumarium	
	Abutilon	Cobblers Peg	Spear Thistle	Common Therespile	Wild Sunflower	Bladder Ketmia	Phasey Bean	Small Fl Mallow	Gooseberry	Turnip Weed	Sow Thistle	Noogoora Bur	
	Malvacea	Asteraceae	Asteraceae	Solonaceae	Asteraceae	Malvacea	Fabaceae	Malvacea	Solonaceae	Brassicaceae	Asteraceae	Asteraceae	Total
ambigua				stem dead	stem live						x	stem live	6
azadirachtae						x							1
charlesworthi													1
fraxini-augustifoliae		x											2
goulteri					х								3
gulyae		x	x	x	stem					x	x	x	-15
kongii		x					x			x			4
leucospermi	x			x						x			6
macintoshii										x			1
masirevicii	x	x					x	x		x		x	8
middletonii										x			2
novem				x	x			x		x	x	x	10
sackstonii	×												2
serafiniae		x		x			x	x		x			6
ueckeri syn. miriciae							x			x	x		5
Total	3	9	1	6	5	1	9	4	0	11	7	5	

<u>Live weed alternative hosts - Diaporthe gulyae (pathogenic)*</u> Total 15 D. gulyae x weed host associations

Noogoora Bur Xanthium strumarium

- Saffron Thistle Carthamus lanatus Ash et al. 2009
- Wild Sunflower *Helianthus annuus*
- Sow Thistle Sonchus oleraceus
- Gooseberry *Physlis sp (no associations to date)*

Noogoora Burr Xanthium strumarium

Wild Helianthus annuus

Pathogenicity and virulence – not always straight forward.....influence of plant age, time of rating after inoc, collection host.....

Disease Progression Ladders – show virulence of *Diaporthe* spp on <u>Sunflower (</u>B89)* at 7 and <u>2</u>8dai after stem slit inoculations

Disease Progression Ladders - Virulence of *Diaporthe* spp on <u>Soybean</u> cv Bunya* at 7 and 28dai after stem slit inoculations

*Brumpton Thompson 2020

Novel species and previously unrecognised associations in green and brown bridges*.....

- Total 49 Diaporthe spp identified
- 32 novel Diaporthe species (11 now described)
- 76 new crop x Diaporthe spp associations
- 89 new weed x Diaporthe spp associations

- Diaporthe ambigua potential pathogen of stonefruit, multiple tree hosts (sunflower stubble, noogoora burr)
- D. aspalathi potential pathogen of lupin, isolated from peanut, soybean, mungbean
- D. leucospermi potential pathogen of protea, isolated from mungbean, vetch
- D. novem hosts include sunflower, soybean; isolated from sunflower, <u>lupin</u> seed, sorghum seed, vetch, turnip weed, Datura spp.

Diaporthe spp. cultural differences

*Brumpton Thompson 2020

More alternative 'hosts' of other species and genera

Pathogen	Common Name	Live Hosts	Symptoms	Other 'Hosts'/Stubble/Residues
Diaporthe gulyae	Stem Canker	Sunflower, soybean, mungbean chickpea	Lesions and lodging, early senescence	Live and dead noogoora bur, bathurst burr, thistles, live and dead cobblers peg, sorghum seed, dead thornapple, live and dead wild sunflower, sunflower seed, maize leaf
Diaporthe kongii	Stem Canker	Sunflower, soybean, chickpea, mungbean		kantana, cotton, dead and live turnip weed, maize leaf
FuSarium graminearum	Gibberella Cob Rot, Stalk Rot	Maize	Cob Rot, Stalk Rot	Maize stubble, maize leaf, soybean roots, lupin seed, soybean seed
	Head Blight, Crown Rot	Wheat	Head death, stalk rot	

<mark>Fusarium</mark>	Fus Stalk Rot	Sorghum	Stalk Rot	Vetch, live - leaf spot, Moree
<mark>andiyazi</mark>				

Other genera.....

Alternaria spp
Alternaria brassicae
Alternaria tenuissima
Aspergillus tubinensis
Bionectria sp
Bionectria ochroleuca
Botryotinia fuckeliana
Cochliobolus sativus
Colletotrichum boninense s.l.
Colletotricum gloeosporioides
Colletotricum truncatum
Colletotricum trifolii/destructivum
Fusarium incarnatum
Fusarium oxysporum
Fusarium proliferatum
Fusarium sp
Haematonectria haematoccocca
Lasiodiplodia theobromae
Leptosphaeria biglobosa 'candanen
Macrophomina phaseolina
Monographella cucumerina
Monographella sp
Myrothecium sp
Nectria sp
Neofusicoccum luteum
Neofusicoccum parvum
Paraphaeosphaeria sp
Pestalotiopsis sp
Phlebiopsis sp
Phoma spp
Pithomyces chartarum
Plectosporium sp
Stagonospera sp
Stemphylium sp
Stenocarpella maydis

Isolated from Turnip Weed

•Damaging pathogen of brassicas

Isolated from sunflower stubble

•Pathogen of wheat – root rot

•Isolated from soybean stubble, unidentified weed residues

•Causes fruit rots on avocados and mangos, stem and pod blight soybeans

•Isolated from multiple crop and weed residues

•Significant pathogen of summer field crops – sorghum, soybean, maize, sunflower.

Isolated from maize residues

•Pathogen of maize

To minimise build-up of a pathogen reservoir:

- Growers and advisors familiarise yourself with the pathogens of all crops in the rotation
- Understand pathogen biology and survival mechanisms
- Take a whole of farming system approach
- <u>Know your Green Bridges</u> around silos, fencelines, pumpsheds, roadsides, waterways
- <u>Beware the Brown Bridges- dead weed 'hosts', crop and weed</u> residues/stubble left on the surface and along paddock edges, volunteers, may be aiding survival of multiple pathogens in the Green and Brown Bridges
- Rotation, rotation, rotation.....consider strategic tillage

What does it all mean...?

- Green and brown crop and weed bridges are contributing to inoculum reservoirs of multiple *Diaporthe* species in Australia, regardless of presence of crop hosts
- Some of those species will be pathogenic on at least one of the crops in the farming system. Or other cropping systems.....
- Some live weeds in <u>non cropping ecosystems</u> also <u>harbour</u> significant crop pathogens in a green bridge eg. garden plants, trees
- <u>Dead 'non-host' weeds</u> as well as crop stubble can be a inoculum reservoir for future disease in a brown bridge

Zero and min tillage systems are contributing to survival of some pathogens and insects.

Acknowledgements

- Australian Sunflower Assoc (ASA), Aust. Oilseeds Federation (AOF)
- Grains Research and Development Corporation (GRDC)
- Department of Agriculture and Fisheries, Queensland (DAFQ)
- Growers and advisors in all regions
- Loretta Serafin: NSW DPI, Tamworth, NSW
- Mal Ryley: USQ Emeritus, Toowoomba, Qld
- Sam Markell and Bryan Hensen: NDSU, Fargo, ND
- Seed Companies: Avosun, KB Ornamentals, Nuseed, Pacific Seeds (Advanta)
- Tom Gulya: USDA (Ret. Fargo ND), CA.
- University of Southern Queensland (USQ)
- University of Queensland (UQ)

Contact details:

Sue Thompson botanica1104@gmail.com

Nuseed Ausigold 62. Norwin, Qld. Australia.

Publications.....

Thompson SM, Tan YP, Young AJ, Neate SM, Aitken EAB, Shivas RG (2011a). Stem cankers on sunflower (*Helianthus annuus*) in Australia reveal a complex of pathogenic *Diaporthe (Phomopsis)* species. Persoonia 27: 80–89.

Thompson SM, Tan YP, Shivas RG, Neate SM, Morin L, Bissett A, Aitken EAB (2015). Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia 35: 39-49.

Thompson S, Grams R, Neate S, Shivas R, Ryley M, Tan YP, et al. (2018a). First reports of *Diaporthe kongii*, *D. masirevicii* and *D. ueckerae* associated with stem and peg dieback on peanut in Australia. *Plant Disease*: 102: 1459.

Thompson SM, Tan YP, Neate SM, Shivas RG, Lindbeck K, Aitken EAB (2018b). *Diaporthe novem* isolated from sunflower (*Helianthus annuus*) and other crop and weed hosts in Australia. European Journal of Plant Pathology 152: 823-831.

Brumpton Thompson S. 2020. *Diaporthe* species association with sunflower and other crops and weeds in eastern Australia. PhD Thesis, School of Agriculture and Food Services, The University of Queensland, Australia. <u>https://doi.org/10.14264/uql.2020.779</u>

Conference and industry publications.....

- Thompson S, Young A, Shivas R (2010). Phomopsis stem canker an emerging disease of Australian sunflowers. In: Proceedings of the 1st Australian Summer Grains Conference, Gold Coast, Australia, 21st - 24th June 2010.
- Thompson SM, Young AJ, Shivas RG (2011b). Cryptic species of Phomopsis from Australia revealed by molecular, morphological and pathogenicity studies. In: Proceedings of the 4th Asian Conference on Plant Pathology concurrent with the 18th Biennial Australasian Plant Pathology Society Conference, p 56, 26-29 April, Darwin. NT. Australia.
- Thompson S, Tan YP, Neate S, Aitken E, Shivas R (2012). Previously undescribed species of Diaporthe responsible for stem cankers on Australian sunflowers – an ongoing investigation of causal species.
 In: Proceedings of the Xth International Sunflower Conference, Mar del Plata, Argentina.

Thompson S, Neate S, Tan YP, Shivas R, Aitken EAB (2016) Weeds and crop stubble as a pathogen 'host' or reservoir. What species are involved with what crop impact – implications for management. GRDC Updates, Goondiwindi, Qld. 2016 <u>https://grdc.com.au/resources-and-publications/grdc-updatepapers/tab-content/grdc-update-papers/2016/03/weeds-and-cropstubble-as-a-pathogen-host-or-reservoir</u>