2015 Progress for Development of Super Confection Sunflower Effectively Resistant to Downy Mildew and Rust

Guojia Ma^{1,2}, Samuel Markell¹, Lili Qi²

¹NDSU – Plant Pathology, Fargo, ND

²USDA, ARS, NCSL, Fargo, ND

Outline

- Background knowledge
- DM- and rust-R confection sunflower germplasm development
- Mapping of DM-R gene in RHA 468
- Mapping of DM-R gene in PI 494578
- Future work
- Acknowledgements

Background Knowledge

DM

• Plasmopara halstedii

Rust

Puccinia helianthi

(Photo by Markell and Gong)

- Serious sunflower diseases in the world
- Development of resistant hybrids is most economic tool for disease management

Research Objectives in 2015

- Create the BC₃ generation in the spring greenhouse and BC₄ generation
- Test all generations in greenhouse/laboratory for resistance
- Complete the molecular mapping of DM resistance gene in RHA 468
- Begin the process of identifying molecular markers for a new DM resistance gene derived from *H. argophyllus* PI 494578

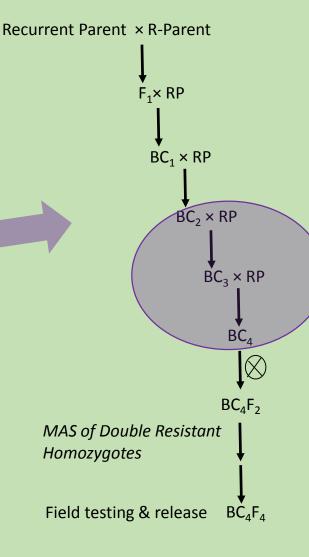

Research Strategy

Initial crosses

Backcrosses

```
\checkmark CONFSCLR5 × RHA 464 (R_{12} + Pl_{ARG})
```

- \checkmark HA-R6 (R_{13a}) × HA 458 (Pl_{17})
- \checkmark HA-R6 (R_{13a}) × HA-DM1 (Pl_{18})



Final products (BC₄F₄)

Confection line 1: $R_{12} + Pl_{ARG}$

Confection line 2: $R_{13a} + Pl_{17}$

Confection line 3: $R_{13a} + Pl_{18}$

Cross-BC₁-BC₂-BC₃-BC₄F₁-BC₄F₂-BC₄F₃-BC₄F₄

- DM (race 734) and rust (race 336) testing of BC₂ of CONFSCLR5 × RHA 464
- DM (race 734) testing of BC₂ of HA-R6 × HA 458 and HA-R6 × HA-DM1

BC ₂	No. of seeds inoculated	No. of DM R-plants	No. of DM & rust double R-plants
CONFSCLR5 × RHA 464 ($R_{12} + PI_{ARG}$)	156	52	22
HA-R6 (R _{13a}) × HA 458 (Pl ₁₇)	60	24	24
HA-R6 (R _{13a}) × HA-DM1 (Pl ₁₈)	68	33	33

- Selected resistant BC₂ individuals were tested with associated DNA markers
- Backcross of the selected BC₂ to respective recurrent parents to produce BC₃

Cross-BC₁-BC₂-BC₃-BC₄F₁-BC₄F₂-BC₄F₃-BC₄F₄

- DM and rust testing of BC₃ of CONFSCLR5 × RHA 464
- DM testing of BC₃ of HA-R6 × HA 458 and HA-R6 × HA-DM1

BC ₃	No. of seeds inoculated	No. of DM R-plants	No. of DM & rust double R-plants
CONFSCLR5 × RHA 464 ($R_{12} + PI_{ARG}$)	135	56	20
HA-R6 (R _{13a}) × HA 458 (Pl ₁₇)	238	92	92
HA-R6 (R _{13a}) × HA-DM1 (Pl ₁₈)	112	36	36

- Selected resistant BC₃ individuals were tested with associated DNA markers
- Backcross of the selected BC₃ to respective recurrent parents to produce BC₄

Cross-BC₁-BC₂-BC₃-BC₄F₁-BC₄F₂-BC₄F₃-BC₄F₄

Currently, working on

- DM and rust testing of BC₄F₁ of CONFSCLR5 × RHA 464
- DM testing of BC_4F_1 of HA-R6 × HA 458 and HA-R6 × HA-DM1
- Selected resistant BC₄F₁ individuals were tested with DNA markers
- Selfing of the selected BC₄F₁ to produce BC₄F₂

Research Objectives in 2015

- Create the BC₃ generation in the spring greenhouse and BC₄ generation
- Test all generations in greenhouse/laboratory for resistance
- Complete the molecular mapping of DM resistance gene in RHA 468
- Begin the process of identifying molecular markers for a new DM resistance gene derived from *H. argophyllus* PI 494578

Mapping of DM-R Gene in RHA 468

- RHA 468: RHA 428/RHA 426//RO 12-13/3/RHA 274/PRS 5
 - o Resistant to all DM races tested, with unknown genetics yet

- HA-R8
 - Susceptible to DM

- Mapping populations
 - o Genotyping was performed on F₂ pop
 - Phenotype was determined from F_{2:3} families
 - Chi-square test suggests DM resistance in RHA 468 is controlled by a single dominant gene

Mapping of DM-R Gene in RHA 468, cont.

- The DM-R gene was located to linkage group (LG) 1 of the sunflower genome with bulked segregant analysis (BSA)
- 12 out of 50 SSR markers previously mapped to LG 1 showed polymorphism between parents
- DM-R gene was mapped to the top end of LG 1
- Further saturation with SNP markers: 37 out of 64 were polymorphic
- DM-R gene in RHA 468 was mapped to an interval of 1.3
 cM

Research Objectives in 2015

- Create the BC₃ generation in the spring greenhouse and BC₄ generation
- Test all generations in greenhouse/laboratory for resistance
- Complete the molecular mapping of DM resistance gene in RHA 468
- Begin the process of identifying molecular markers for a new DM resistance gene derived from *H. argophyllus* PI 494578

Mapping of DM-R Gene in PI 494578

- H. argophyllus PI 494578
 - o DM-resistant lines with unknown genetics yet
 - Collected at Premont, TX
- HA 89: susceptible to DM
- Mapping populations
 - o Genotyping on BC₁F₂ pop
 - o Phenotyping on BC₁F₃ pop

Phenotyping of DM Resistance in Pl 494578

DM evaluation in BC₁F₃ population

- o 114 F_{2:3} were inoculated with DM race 734
- Segregation deviation is observed
- DM resistance in PI 494578 is believed to be controlled by a single dominant gene, and further confirmation is needed

Future Work (2016)

- Super confection DM- and rust-R sunflower project
 - Marker-assisted selection of double homozygous BC₄F₂individuals, and advance to BC₄F₃ generations
 - o Greenhouse test for BC₄F₃ generations for resistance
 - Marker confirmation for BC₄F₃ generations in lab
 - Seed increase and agronomic performance evaluation in field
 - Prepare to release confection germplasm showed both resistance to rust and DM
- Complete molecular mapping of the resistance gene in the line RHA 468 and manuscript writing
- Genotyping of DM-R gene derived from H. argophyllus PI 494578 and linkage analysis

Acknowledgements

- Angelia Hogness (USDA, ARS, NCSL, SPBR)
- Dr. Zahirul Talukder (Dept. of Plant Sciences, NDSU)
- Mitchell Stephens (Dept. of Plant Sciences, NDSU)
- Cullen Walser (Dept. of Plant Sciences, NDSU)

- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS through ND Department of Agriculture

Thank you & Questions?