2016 Progress for Development of Super Confection Sunflower Effectively Resistant to Downy Mildew and Rust

> Guojia Ma^{1,2}, Samuel Markell¹, Lili Qi² ¹NDSU – Plant Pathology, Fargo, ND ²USDA, ARS, NCSL, Fargo, ND

> > NSA Research Forum 01-11-2017

Outline (Jan, 2014 — April, 2017)

- Background knowledge
- Development of DM- and rust-*R* confection sunflower germplasm
- Mapping of DM *R*-gene in RHA 468
- Mapping of DM *R*-gene in PI 494578
- Future work
- Acknowledgements

Background Knowledge DM Rust

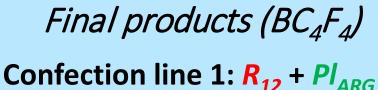
- Plasmopara halstedii
- Puccinia helianthi

(Photo by Markell and Gong)

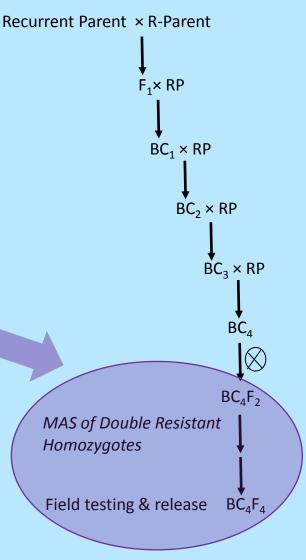
Serious sunflower diseases in the world

Development of resistant hybrids is most economic tool for disease management

Research Objectives in 2016


- Selection of double homozygous BC₄F₂ individuals and advancement to BC₄F₃ generation
- Seed increase and evaluation of agronomic performance of BC₄F₃ generation in field
- Molecular mapping of a new DM *R*-gene in RHA 468
- Molecular mapping of a new DM *R*-gene derived from *H. argophyllus* PI 494578

Research Strategy


Initial crosses

Backcrosses

 $\checkmark \text{CONFSCLR5} \times \text{RHA 464} (R_{12} + Pl_{ARG}) \\ \checkmark \text{HA-R6} (R_{13a}) \times \text{HA 458} (Pl_{17}) \\ \checkmark \text{HA-R6} (R_{13a}) \times \text{HA-DM1} (Pl_{18})$

Confection line 1: $R_{12} + PI_{ARG}$ Confection line 2: $R_{13a} + PI_{17}$ Confection line 3: $R_{13a} + PI_{18}$

Cross-BC₁-BC₂-BC₃-BC₄F₁-BC₄F₂-BC₄F₃-BC₄

- DM and rust resistant BC₄F₁ individuals were selfed for BC₄F₂ generation
- *R*-gene linked markers were used for double homozygotes selection
- Double homozygotes were advanced to BC₄F₃ generation

BC ₄ F ₂	No. of seedlings tested	No. of double homozygotes			
CONFSCLR5 × RHA 464 (R ₁₂ + Pl _{ARG})	214	6			
HA-R6 (<i>R_{13a}</i>) × HA 458 (<i>Pl₁₇</i>)	188	12			
HA-R6 (<i>R_{13a}</i>) × HA-DM1 (<i>Pl₁₈</i>)	376	32			

Cross-BC₁-BC₂-BC₃-BC₄F₁-BC₄F₂-BC₄F₃-BC₄F₄

- Spring 2016
 - DM and rust testing of the selected BC₄F₃ families to confirm marker selection results
- Summer 2016
 - \circ Grow BC₄F₃ generation in field
 - \circ Bagging heads for seed increase
 - Agronomic performance (plant height & flowering dates) evaluation and harvesting

BC ₄ F ₃	No. of double homozygotes	No. of families planted	No. of heads bagged	
CONFSCLR5 × RHA 464 (R ₁₂ + Pl _{ARG})	6	4	240	
HA-R6 (<i>R_{13a}</i>) × HA 458 (<i>Pl₁₇</i>)	12	4	240	
HA-R6 (<i>R_{13a}</i>) × HA-DM1 (<i>Pl₁₈</i>)	32	5	41	

Research Objectives in 2016

- Selection of double homozygous BC₄F₂ individuals and advancement to BC₄F₃ generation
- Seed increase and agronomic performance evaluation of BC₄F₃ generation in field
- Molecular mapping of a new DM *R*-gene in RHA 468
- Molecular mapping of a new DM *R*-gene derived from *H. argophyllus* PI 494578

Mapping of DM *R*-Gene in RHA 468

- Have been reported last year
- Finished all the experiments
- The new DM *R*-gene was mapped to LG1
- Working on manuscript

Research Objectives in 2016

- Selection of double homozygous BC₄F₂ individuals and advancement to BC₄F₃ generation
- Seed increase and agronomic performance evaluation of BC₄F₃ generation in field
- Molecular mapping of a new DM *R*-gene in RHA 468
- Molecular mapping of a new DM *R*-gene derived from *H. argophyllus* PI 494578

Mapping of DM *R*-Gene in PI 494578

• H. argophyllus PI 494578

DM resistant line with unknown *R*-gene yet
Collected at Premont, TX

• HA 89: susceptible to DM

• Mapping populations • Genotyping on BC₁F₂ pop • Phenotyping on BC₁F₃ pop

Phenotyping of DM Resistance

DM evaluation in BC₁F_{2:3} population

114 F_{2:3} families were inoculated with DM race 734

27 S: 57 H: 30 R (χ² = 0.16, df = 2, P = 0.9231),
fitting 1:2:1 Mendelian ratio

 DM resistance in PI 494578 is controlled by single dominant gene

Genotyping of BC₁F₂ population

114 BC₁F₂ and two parents were analyzed with GBS (genotyping-by-sequencing)

LGs	No. SNPs generated	No. polymorphic SNPs	No. SNPs fit 1:2:1 ratio
LG 1	5,701	970	17
LG 2	6,262	916	4
LG 3	5,833	866	8
LG 4	5,702	882	1
LG 5	7,987	1,239	1
LG 6	2,759	518	0
LG 7	2,693	452	0
LG 8	6,257	877	169
LG 9	7,859	1,299	2
LG 10	10,008	1,531	9
LG 11	5,684	885	3
LG 12	6,286	1,050	15
LG 13	7,449	1,103	44
LG 14	6,428	1,009	23
LG 15	5,861	912	1
LG 16	5,617	877	0
LG 17	7,389	1,210	1
Unassigned	12,802	1,795	16
Total	118,577	18,391	314

DM R-gene in PI 494578 Was on LG8

• The DM resistance was linked with markers from LG8 of the sunflower genome

• DM *R*-gene from PI 494578 was mapped to an interval of 1.7 cM

Broad Spectrum DM Resistance

Homozygous resistant line of BC₁F₃ (14-207-58) was tested with six DM races Immune to all six races tested

	Downy mildew races											
Line	31	14	700		710		714		734		774	
	S	R	S	R	S	R	S	R	S	R	S	R
Cargill 270 (S-CK)	27	0	25	0	21	0	21	0	26	0	23	0
HA 89	15	0	16	0	16	0	17	0	17	0	22	0
HA-DM1 (R-CK)	0	15	0	17	0	14	0	14	0	14	0	9
14-207-58	0	35	0	33	0	34	0	34	0	33	0	40

New Germplasm Development

 300 of BC₂F₂ seedlings were tested with DM race 734

o 191 resistant individuals were recovered

 62 homozygous BC₂F₂ individuals were selected by SNP markers

32 homozygotes were advanced to BC₂F₃
generation

Ongoing Work (2017)

- Super confection DM- and rust-R sunflower project
 - **o** Threshing heads
 - DM, rust, and DNA marker tests of the finished BC₄F₄ lines for confirmation
 - Prepare documentations and seeds for germplasm release
- Complete the manuscript of molecular mapping of DM *R*-gene from *H. argophyllus* PI 494578
- Prepare the manuscript of molecular mapping of DM *R*-gene in the line RHA 468

Acknowledgements

- Angelia Hogness (USDA, ARS, NCSL, SPBR)
- Dr. Zahirul Talukder (Dept. of Plant Sciences, NDSU)
- William Boehmer (Dept. of Plant Sciences, NDSU)
- Jeremy Erickson (Dept. of Plant Sciences, NDSU)
- Rebecca Bradley (Dept. of Plant Pathology, NDSU)
- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS through ND Department of Agriculture

