Update on Genetics and Breeding Studies at USDA

Dr. Brent Hulke F Jarrad Prasifka Dr. Qingming Gao Brian Smart

New releases

- RHA 477: early maturity, IMI, DM resistant
- RHA 478: high yield, HO, IMI, Phomopsis, Sclerotinia resistance
- RHA 479: excellent Phomopsis, Sclerotinia resistance
- RHA 480: excellent yield and Phomopsis resistance, IMI resistant
- CMS/HA 481: HO, IMI, Phompsis*, Sclerotinia*

Visit us at: www.hulkelab.org

November 21, 2016 Written by Brian Smart

Our lab is proud to have released a new restorer oilseed germplasm, RHA 477 as of November 18th. RHA 477 is a F7-derived F9 restorer oilseed sunflower line selected from the cross RHA 468/R-7009. RHA 468 is an imidazolinone herbicide tolderant, downy mildew resistant, oilseed restorer line (by USDA and NDAES), while R-7009 is the donor line of early maturity and was obtained through a germplasm exchange with Dr. Mikhail Christov of Bulgaria. Check out the full release statement below!

RHA_477_Release.pdf	1 / 2		¢	Ŧ	÷	Â
	USDA					
	United States Department of Agriculture					E.
	Research, Education, and Economics Agricultural Research Service					L
UN	ITED STATES DEPARTMENT OF AGRICULTURE					L
	AGRICULTURAL RESEARCH SERVICE WASHINGTON, D.C.					L
NOTICE OF RE	LEASE OF OILSEED SUNFLOWER GERMPLASM	RHA 477			#	Ŀ
The United States Depa	artment of Agriculture, Agricultural Research Service, anno	unces the				
release of the restorer o	bilseed germplasm RHA 477, which has been developed to p y with tolerance to imidazolinone herbicides and resistance	provide a			+	L
mildew races 714 and 7 parental lines or germp	734, and are available for use by industry and public researc lasms.	hers to crea	te		Ξ	
Germplasm Pedigree D	Descriptions:					
	ed F9 restorer oilseed sunflower line selected from the cross	RHA 468/	R-			-

Genomic Selection / Trait mapping

- Genomic Selection: use of genome-wide markers to model effects of parts of the genome on all the traits we measure
- Traits being mapped: glandular trichome abundance, Seed Weevil resistance, fatty acids
- Using GBS data with trio imputation from parents to fill gaps in GBS data

Troubleshooting GBS data

- Sunflower genomics is complicated by ancient genome duplication and large amount of redundant DNA from transposable elements
- All marker assays suffer from errors to some extent, but GBS data requires multiple filtration and haplotype identification steps
- Good news is that the data is dense enough to allow us to see haplotypes, we need to develop a tool that uses that information to correct errors

Fatty acid association mapping

- NSA funded project
 - SAM association population + 49 other released inbred lines
 - Evaluated at 6 environments with a range of different temperatures at bloom
 - Analyzed using association mapping analyses, controlled for population structure and kinship
 - Opportunities to study minor effect QTL and their interaction with the environment

Justification

- Phenotyping fatty acids is expensive in resources and time
- Marker-based prediction methods are increasingly being employed in sunflower, so fatty acids could be a cheap addition
- Precision in engineering oil profiles may be needed in the near future
- Better understanding of GxE is needed

Stearic BC Value

Palmitic BC Value

Summary

- Detected 8 loci that appear to be important for fatty acid concentration among environments
 - Includes Pervenents mutation of FAD2-1
- Potentially an additional 15 loci which we only see significance in one environment
 - Mirrors known importance of GxE in fatty acid metabolism

Future Steps

- Complete gas chromatography analysis of another three environments
- Subject fatty acid data to complexity reduction methods
 - Principle components on the correlated phenotypes
 - MMM analysis with exploratory factor analysis on the multienvironment data to establish environmental continuum and correlate with loci

Thanks to our research sponsors! -Genome Canada/Genome British Columbia -USDA Sclerotinia Initiative

-National Sunflower Association -Saskatchewan Ministry of Ag.

Sad truth: Most "mad scientists" are actually just mad engineers