Prevalence and Virulence of Plasmopara halstedii (Downy Mildew) in Sunflowers

Michelle Gilley & Samuel Markell, North Dakota State University, Dept. of Plant Pathology, Fargo, ND; Tom Gulya (retired) & Christopher Misar, USDA-ARS, Northern Crop Science Laboratory, Fargo, ND

NDSU NORTH DAKOTA STATE UNIVERSITY

1. Monitor race changes and effectiveness of resistance genes

 Determine prevalence and incidence of downy mildew in North Dakota and South Dakota

Outline

- Introduction
- Downy mildew races
- Virulence on additional genes
- Prevalence and incidence of downy mildew
- Conclusions

Plasmopara halstedii

- Obligate oomycete
- Specific to sunflowers
- Needs water
- Systemic
- Sporulates
 NDSU NORTH DAKOTA STATE UNIVERSITY

Importance of Downy Mildew Yield loss

- Most infected plants die

- Survivors yield zero and compete
- Rarely are fields uniformly infected

 Monitor race changes and effectiveness of resistance genes

2. Determine prevalence and incidence of downy mildew in North Dakota and South Dakota

Materials and Methods

- Collected 436 samples from 185 fields
- USDA-ARS, extension and seed company personnel sent in an additional 126 samples from North Dakota, South Dakota, Minnesota and Nebraska

Materials and Methods

Infected Sunflowers

Sporulated Sunflowers

Standard Differentials

Differential Number	Postulated PI R genes	Sunflower Line	Isolates Virulent / Isolates Screened	Percent Isolates Virulent
1	None	Susceptible (MYC 270)	185/185	100
2	PI_1	RHA 265	185/185	100
3	PI_{2}/PI_{21}	RHA 274	171/185	92
4	Pl_5	DM-2	139/185	75
5	?	PM 17	15/185	8
6	?	803	12/185	6
7	PI ₁₆	HA-R4	2/185	1
8	PI ₁₃	HA-R5	2/185	1
9	PI_6	HA 335	87/185	47

Downy Mildew Races

Race	2014	2015	Total
304*	1	0	1
314	3	10	13
700	19	19	38
704	1	4	5
707*	1	0	1
710	33	25	58
714	38	17	55
717*	0	1	1
730	0	1	1
770	0	1	1
774	9	2	11

*New races in the USA

Supplemental Lines

NDSU NORTH DAKOTA STATE UNIVERSITY

Postulated PI R genes	Sunflower Lines	Isolates Virulent / Isolates Screened	Percent Isolates Virulent
Pl ₈	RHA 340	7/185	4
Pl _{Arg}	RHA 419	0/185	0
PI ₁₅	RNID	0/146	0
PI ₁₇	HA 458	0/141	0
PI ₁₈	HA DM 1	0/167	0
?	RHA 468	0/146	0
?	TX 16R*	0/164	0
?	RHA 428*	15/66	23

*Seed purity being evaluated

1. Monitor race changes and effectiveness of resistance genes

 Determine prevalence and incidence of downy mildew in North Dakota and South Dakota

Materials and Methods

- Timing early in the growing season
- 181 fields

Prevalence is + or –

 Incidence = 40 plants in 2-row pairs at 5 points along a W for a total of 200 plants

NDSU NORTH DAKOTA

Prevalence and Incidence in North Dakota and South Dakota

	2014	2015
Prevalence	65% (68/105)	78% (59/76)
Incidence*		
0	65%	55%
0.5 – 4.5%	25%	24%
5 – 14.5%	9%	14%
≥ 15%	1%	7%

Conclusions

- P. halstedii has a proven history of overcoming resistance genes
- Use of resistant hybrids in combination with fungicide seed treatments is still the best management plan

Acknowledgements

- National Sunflower Association
- ND Agriculture Experiment Station
- NDSU Extension Service
- NDSU Extension Plant Pathology Group
- USDA ARS Sunflower and Plant Biology Unit

References

- Friskop, A., Markell, S. and Gulya, T. 2009. Downy Mildew of Sunflower. NDSU Extension Service, N.D. Agricultural Experiment Station, Fargo, ND PP-1402.
- Gascuel, Q., Martinez, Y., Boniface, M.-C., Vear, F., Pichon, M. and Godiard, L. 2015. The sunflower downy mildew pathogen *Plasmopara halstedii*. Molecular Plant Pathology, 16: 109–122. doi: 10.1111/mpp.12164
- Gulya, T., Kandel, H., McMullen, M., Knodel, J., Berglund, D., Mathew, F., Lamey, H. A., Nowatski, J., and Markell, S. 2013. Prevalence and incidence of sunflower downy mildew in North Dakota between 2001 and 2011. Online. Plant Health Progress. doi:10.1094/PHP-2013-0522-01-RS.
- Gulya, T., Rashid, K.Y., and Masirevic, S.M. 1997. Sunflower Diseases. In: Schneiter AA (ed) Sunflower technology and production. American Society Agronomy, Madison, Wisconsin.

