Sclerotinia stalk rot resistance in sunflower: Introgression of resistance from wild annual species and QTL mapping of resistance in cultivated sunflower

> Zahirul Talukder¹, Yunming Long¹, Thomas Gulya², Charles Block³, Gerald Seiler², Lili Qi²

¹Department of Plant Sciences, NDSU ²USDA-ARS Northern Crop Science Laboratory, Fargo, ND ³USDA-ARS, Plant Introduction Station, Ames, IA

INTRODUCTION

Sclerotinia sclerotiorum causes two serious diseases in sunflower

Stalk rot, incited by root infection (unique to sunflower)

Head rot, caused by airborne ascospores

Genetics of resistance is different for the two diseases

Resistance is polygenic, no major resistant gene is known

Resistance breeding relies on incorporating genetic factors from various partially-tolerant breeding lines

INTRODUCTION...CONT.

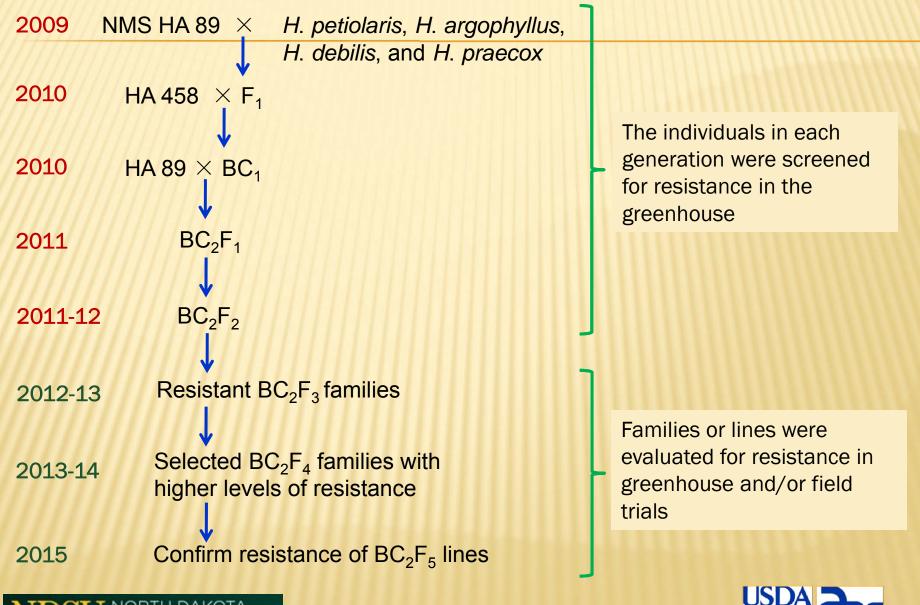
Wild annual sunflower species are valuable sources of Sclerotinia resistance

Stalk rot resistance was identified in wild annual species *H. argophyllus*, *H. debilis*, *H. praecox*, and *H. petiolaris*

Wild annual species were selected to transfer Sclerotinia stalk rot resistance into cultivated sunflower

GOAL OF THE PROJECT

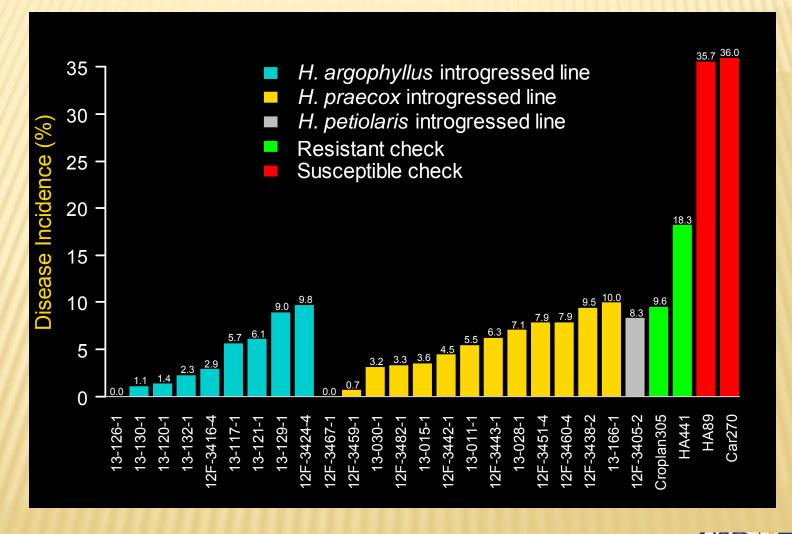
Overall objective


• To improve Sclerotinia stalk rot resistance in the cultivated sunflower

Specific objectives

- Pre-breed novel Sclerotinia resistance from wild annual species (*H. argophyllus, H. praecox,* and *H. petiolaris*) into cultivated sunflower
- Investigate inheritance of Sclerotinia resistance in introgressed lines
- QTL mapping of Sclerotinia stalk rot resistance using high throughput SNP marker resource

Introgression of Sclerotinia resistance from wild species


IDSU NORTH DAKOTA STATE UNIVERSITY Table 1. Evaluation of the 13 most resistant BC_2F_3 families and derived BC_2F_4 lines for Sclerotinia stalk rot resistance in the field from 2012 to 2014

	Disease incidence (%)							
Resistance donor	2012		201	2014				
	Pedigree	BC_2F_3	Pedigree	BC_2F_4	BC ₂ F ₄			
H. petiolaris ssp. fallax	11-256-049	0	12F-3405-2	4.0	8.4			
PI 435843	11-256-053	0	12F-3406-5	5.6	-			
H. argophyllus	11-275-037	0	12F-3416-4	9.3	2.9			
PI 494573	11-283-037	0	12F-3424-4	0	10.0			
<i>H. praecox</i> ssp. <i>runyonii</i> PI 468853	11-291-01	6.6	12F-3438-2	3.1	9.5			
	11-291-09	4.5	12F-3442-1	6.7	4.5			
	11-291-17	1.7	12F-3443-1	4.2	6.3			
	11-291-45	5.3	12F-3451-4	3.9	7.9			
	11-291-57	1.5	12F-3456-1	8.3	-			
	11-291-65	4.2	12F-3459-1	0	0.7			
	11-291-67	2.3	12F-3460-4	0	7.9			
	11-292-33	0	12F-3467-1	3.3	0			
	11-294-21	3.1	12F-3482-1	3.3	3.3			
Susceptible checks	Cargrill 270	34.8		72.6	36.0			
	HA 89	23.7		51.6	35.7			
Resistant checks	Croplan 305	12.4		34.9	9.6			
	HA 441	27.4		28.6	18.3			

Mean performance of 23 BC_2F_4 families for Sclerotinia stalk rot resistance in two locations of North Dakota during 2014

QTL mapping of Sclerotinia stalk rot resistance in sunflower

Mapping population

 106 F₇-derived RILs developed through Single Seed Descent method from a cross between HA 441 (a maintainer line) and RHA 439 (a restorer line)

Table 2. Stalk rot evaluation of HA 441 and RHA 439

Materials	2009 Field		2011 Greenhouse		2013 Field		2014 Field	
	No. of replicas	Disease incidence (%)						
HA 89 (S-check)	10	21.0	2	56.3	4	52.7	20	35.7
CAR 270 (S-check)	12	22.0	2	79.2	4	72.5	20	36.0
Croplan 305 (R-check)	12	5.0	2	25.0	4	34.7	20	9.9
HA 441 (Parent)	6	5.43	2	16.7	6	35.2	28	19.4
RHA 439 (Parent)	6	11.48	2	35.1	2	43.1	8	11.7

QTL mapping of Sclerotinia stalk rot resistance in sunflower

Environments:

- 2012: Carrington, ND and Crookston, MN
- 2013: Crookston, MN
- 2014: Carrington, ND and Grandin, ND

• Field design:

- Randomized complete block design
- Two replications each for 2012 and 2013 field trials
- Four replications each for 2014 field trials

• Field inoculation:

 S. sclerotiorum mycelia grown on millet and deposited in furrows next to the rows of sunflower lines (Gulya et al. 2008)

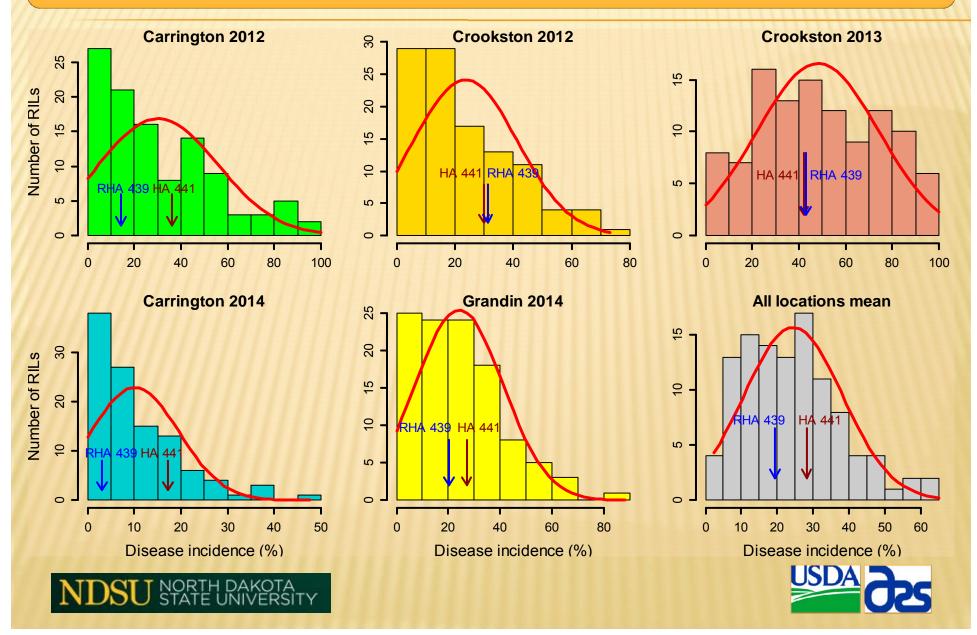
• Disease incidence (DI) scoring:

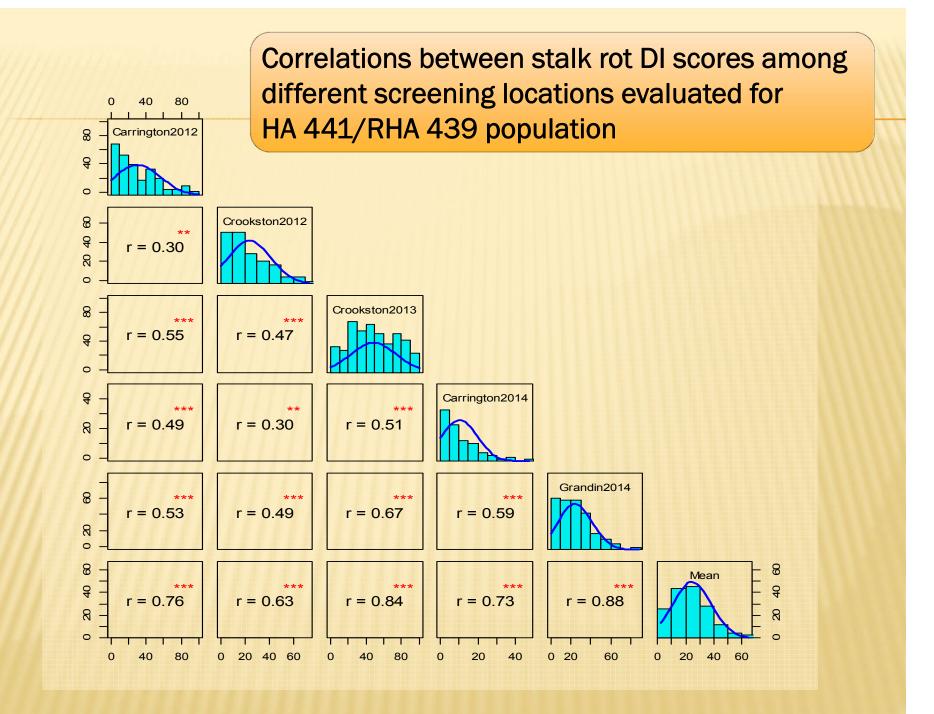
 Percent of plants showing wilting and/or basal stem rot lesion

Stalk rot evaluation

Phenotypic data analysis

 Analysis was performed across all five environments using PROC MIXED of SAS version 9.3. All factors were treated as random effects except environment


Table 3. Analysis of variance (ANOVA) of stalk rot disease incidence (DI) for HA441/RHA 439 population evaluated in five environments


Component	df	Variance	Confidence	limit (0.05)	F/Z value	Dr > E/7
		estimate	lower	upper		
Env	4	-	-	-	164.7	<.0001
Rep (Env)	9	σ_{r}^{2} = 13.19	5.42	66.09	1.71	0.0439
Genotype	107	$\sigma_{g}^{2} = 161.81$	119.21	232.30	5.92	<.0001
Genotype x Env	428	$\sigma^{2}_{ge} = 61.15$	39.35	107.90	3.95	<.0001
Error	963	$\sigma_{e}^{2} = 345.73$	315.86	380.07	21.19	<.0001

Phenotypic frequency distributions of stalk rot disease incidence (DI) for HA441/RHA 439 population evaluated in five environments

QTL mapping of Sclerotinia stalk rot resistance in sunflower

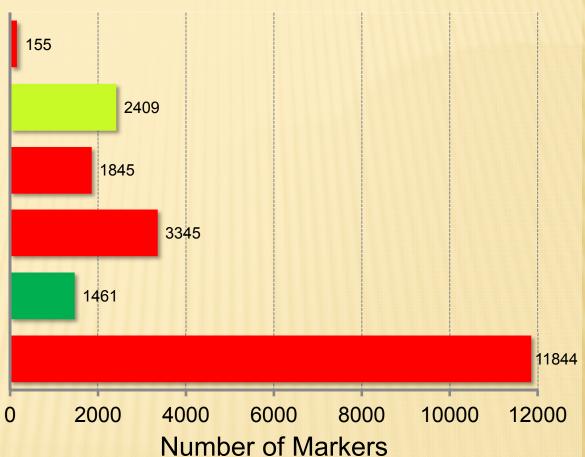
Genotyping of RILs

- Genotype-by-sequencing (GBS) technology was used for simultaneous discovery and genotyping of large numbers of single nucleotide polymorphism (SNP) markers
- GBS was conducted at the Genomic Diversity facility of Cornell University
- GBS was performed simultaneously using 106 RILs, 140 F₂ progenies, 32 advance breeding lines and six parents of the respective populations
- A total of 21,059 SNP markers were generated from the GBS protocol

Distribution of SNP markers generated by GBS technology for HA 441/RHA 439 RIL population

Both parents missing

One parent missing


Both parents heterozygous

One parent heterozygous

Polymorphic markers

Monomorphic markers

0

FUTURE PLAN

Complete linkage map construction and QTL mapping in HA 441/RHA 439 population

Field evaluation of stalk rot resistance and QTL mapping in a AB-RIL population derived from a cross of HA 89 and *H. argophyllus*

Genotype stalk rot resistant introgression lines by GBS and identify introgressed wild segments associated with stalk rot resistance

ACKNOWLEDGEMENT

- Michelle Gilley
 - Angelia Hogness
 - Dr. Nikolay Balbyshev
 - Megan Ramsett
 - Christopher Misar

National Sclerotinia Initiative for financial support

NDSI

USDA