Update on Host-Plant Resistance to Seedand Stem-Infesting Insect Pests

Jarrad Prasifka & Brent Hulke, USDA-ARS Deirdre Prischmann-Voldseth and Travis Lund, NDSU Kathy Grady, SDSU Rob Aiken, Kansas State University

Recent USDA Plant Resistance Work

- ID germplasm with insect resistance
 - All four insect pests
 - Field trials in ND, SD, KS
- End of 'combined' project in 2014
 - Very high labor costs
 - Impractical to run four projects well
 - Focus on specific traits

Changing Approach, Updates

- 'Mechanism phenotyping'
 - Assess traits proposed to convey resistance
 - e.g., amount of chemical 'X', toxic to target pest
 - Field screening for confirmation (smaller scale)
- Updates for insects
 - Some projects on hold
 - Others accelerating or finishing

Sunflower Moth – Mechanisms

- Lower attraction for oviposition
 - No active projects
- Early larval mortality
 - Glandular trichomes and terpenoids
- Resistance to late larval feeding
 HA 467 × PI 170415 ----> F2:3

Sunflower Moth – Pericarp Strength

Fargo Entries, 2013

Sunflower Moth – Pericarp Strength

Fargo Entries, 2013

Banded Sunflower Moth – PI 494859

- Potential value of PI for breeding
 - Evidence of differences in terpenoid compounds
- Confounding effects of seed dormancy
 - 60 DAP, range from V8 to R2 plants
 - Ongoing efforts to assess public inbreds
 - Future efforts on chemical resistance factors?

Sunflower Stem Weevil – X-rays

Red Sunflower Seed Weevil – PI 431542

• In-field % damage, transfer to hybrids

Entry	inbred-07	inbred-08	inbred-10	hybrid-10
RSSW-Exp-227	1.4	1.6	2.0	1.6
RSSW-Exp-231	4.4	7.7	6.0	1.0
RSSW-Exp-237	2.4	7.8	6.6	2.2
PI 431542	0.6	1.9	1.4	*
HA 89	8.0	13.2	*	*
HA 445	*	18.2	11.8	*
HA 445 / RHA 377	*	*	*	8.0
HA412HO / RHA 377	*	*	*	9.5

Red Sunflower Seed Weevil – PI 431542

• Test-crosses with good yields (Onida, 2013)

entry	lb/ac	% oil	ht (in)	% lodging
Exp-227 / RHA 464	2022	43.0	67	8
Exp-227 / RHA 468	1985	41.7	67	17
Exp-231 / RHA 464	1944	43.1	63	27
Croplan 3080	1445	39.6	57	35
Pioneer 63ME80	1789	40.2	70	32
Syngenta 3733 NS/DM	1158	38.4	54	52
TRIAL MEAN	1648	40.0	60	28

Conclusions, Future Directions – Moths

- Sunflower moth
 - Glandular trichome characterization, mapping
 - Pericarp work ongoing with PI 170415
 - Confection work in NE via Specialty Crops
 - Planning preliminary work on plant attraction
- Banded sunflower moth
 - Evaluation of public inbreds still underway
 - Potential to start mechanism-specific work

Conclusions, Future Directions – Weevils

- Sunflower stem weevil
 - Stem size confounding factor in previous work
 - Potential resistance in PI or interspecific sources
- Red sunflower seed weevil
 - Resistance consistent, not understood
 - Ongoing work on plant volatiles
 - Potential germplasm release in 2014