2013 Breeding Progress for Rust Resistance in Confection Sunflower

Guojia Ma^{1,2}, Yunming Long^{1,3}, Sam Markell², Tom Gulya¹ and Lili Qi¹

¹USDA, ARS, NCSL, Fargo, ND

²NDSU – Plant Pathology, Fargo, ND

³NDSU – Plant Sciences, Fargo, ND

Objectives

- Re-location of rust resistance gene R₂
- Pyramiding of rust resistance genes in confection sunflower

Background knowledge

- Sunflower rust, incited by Puccinia helianthi Schwein
- Confection sunflower is more vulnerable to stresses than oilseed sunflower
- HA-R6 (R_{13a}) is the only highly resistant confection sunflower
- From our previous project, three rust resistance genes, R_2 , R_4 , and R_5 , have been introduced from oil type into confection sunflower
- Pyramiding multiple resistance genes is an effective way to overcome resistance ineffectiveness
- DNA markers closely linked to R-gene would assist selection of individuals carrying multi-R genes

Re-location of rust resistance gene R₂

Background

- R_2 gene was previously mapped to LG9 and co-segregated with SSR marker ORS333 (Lawson *et al.*, 2011)
- ORS333 was used to select homozygous BC_4F_3 families derived from the cross of CONFSCLB1*5/CM29 (carrying R_2 gene) and showed that it is not associated with rust resistance

R_2 gene was re-localized to LG14

- F_2 mapping population from HA 89 × CM29 (USDA-origin carrying the gene R_2)
- Rust phenotyping: A total of 117 F_2 -derived F_3 families (20 plants per family) were screened with rust race 336
- Genetic mapping
 - R₂ was localized to LG14 of sunflower with BSA
 - \circ Genotyping of the 118 F₂ individuals with 13 polymorphic SSR markers from LG14 discovered one SSR (HT567) distal of R_2 at 4.1 cM

Further saturation of R₂ region with SNP markers

NSA SNP map

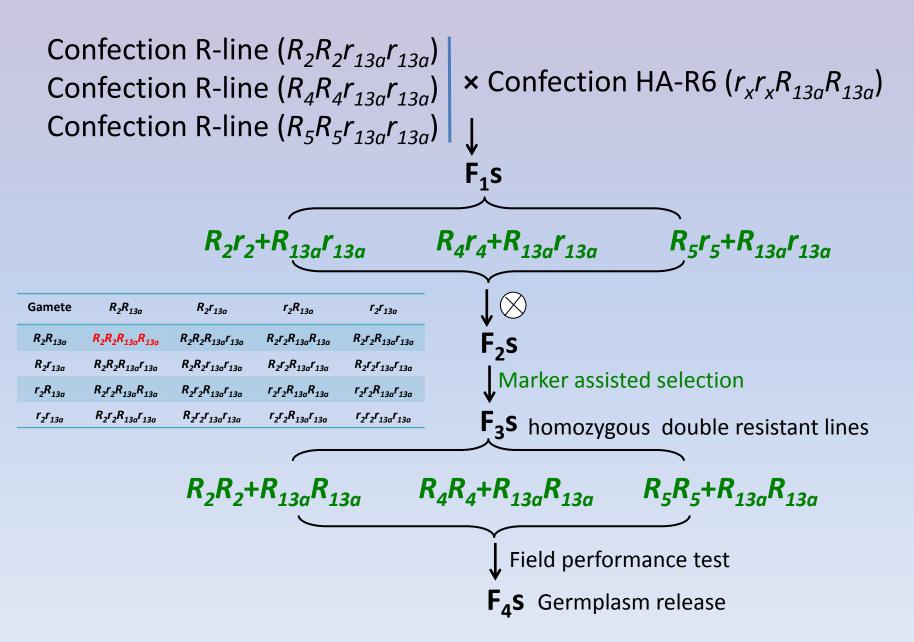
Public SNP map

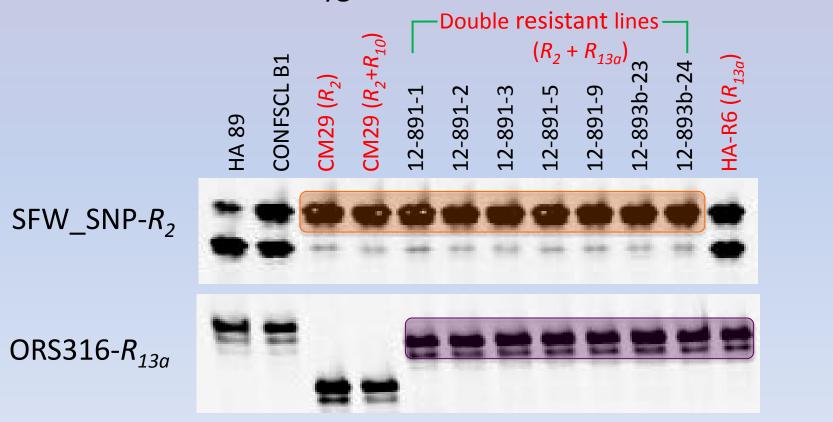
23 SNPs, 10.2 cM covering **R**₂

12 SNPs, 4.9 cM covering **R**₂

- ❖ A total of 35 SNPs were screened between two parents
- ❖ Ten polymorphic SNP markers were genotyped in F₂ population, and integrated with SSR map
- \clubsuit Two SNPs flanking R_2 at 2.7 and 1.8 cM, respectively

Scheme for pyramiding of rust R-genes

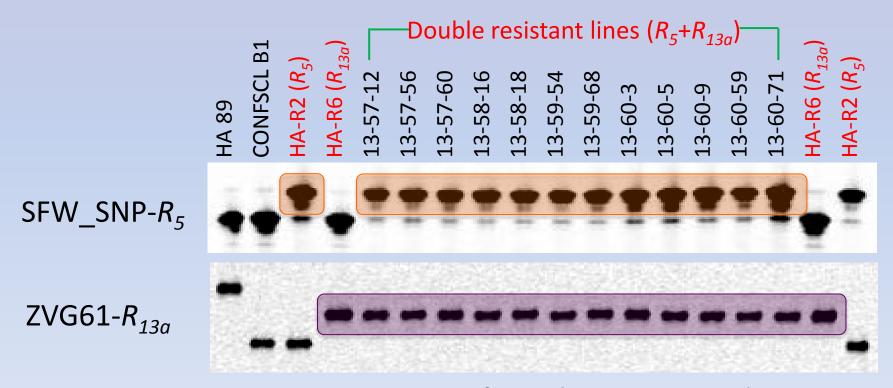



Table 1 The rust resistance genes and their linked DNA markers

R	Linkage	_		
genes	group	SSR	SNP*	References
R2	14	HT567	2 NSA-SNPs 2 SFW-SNPs	Current study
R 5	2	ORS1197 ORS653	2 SFW-SNPs	Qi <i>et al</i> . 2012, Long <i>et al</i> . unpublished data
R4	13	ORS316, ZVG61, ORS581, HT382		Qi <i>et al</i> . 2011
R 13a	13	ORS316, ZVG61, ORS581, HT382		Gong & Qi <i>et al</i> . 2013

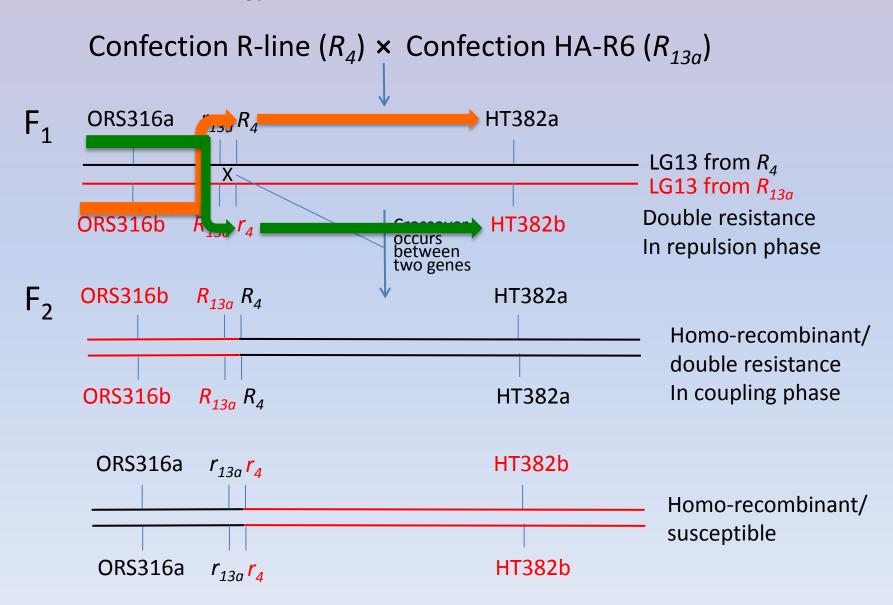
^{*}NSA-SNP from NSA SNP Consortium; SFW-SNP from Bowers et al. 2012

Selection of the double R-line of R_2 and R_{13a}


- A total of 524 F_2 plants from the cross between an R_2 line and an R_{13a} line were screened by DNA markers linked to R_2 and R_{13a}
- Eleven F_2 plants with the combination of R_2 and R_{13a} were obtained at the homozygous condition

HA 89: common parent in mapping of R_2 and R_{13a} ; CM29: R_2 donor; CONFSCLB1: confection recurrent parent to produce confection R_2 line; double resistant lines: selection from the cross of confection R_2 /HA-R6 (R_{13a})

Selection of the double R-line of R_5 and R_{13a}


- A total of 368 F_2 plants from the cross between an R_5 line and an R_{13a} line were screened by DNA markers linked to R_5 and R_{13a}
- Thirteen F_2 plants with the combination of R_5 and R_{13a} were obtained at the homozygous condition

HA 89: common parent in mapping of R_5 and R_{13a} ; HA-R2: R_5 donor; CONFSCLB1: confection recurrent parent to produce confection R_5 line; double resistant lines: selection from the cross of confection R5/HA-R6

Progress in identifying double R-line of R_4+R_{13a}

Both R_4 and R_{13a} were mapped to LG13 and very tightly linked

- A total of 1,147 F_2 plants from the cross between R_4 and R_{13a} were tested for rust resistance, and only one plant was found to be susceptible which was possibly derived from recombination
- Out of 1,116 F_2 plants screened with flanking markers, one was found to be expected recombinant with possible R_4 and R_{13a} in coupling phase
- Closer flanking SNP markers are needed for further confirmation

Field performance test for homozygous double resistant F₃ plants

• Eight homozygous R_5+R_{13a} resistant F_3 families and seven putative homozygous R_2+R_{13a} resistant F_3 families were planted and evaluated for their agronomic performance (height and flowering date) in Fargo field in summer 2013

 About 220 heads were bagged and harvested for germplasm release in the near future

Acknowledgments

- Angelia Hogness
- Cullen Walser
- Emily Wentzel

Financial support

Specialty Crop Block Grant, USDA-AMS through ND Department of Agriculture

Thank you

Questions?