Outlook for Blackbird Repellents

George Linz, Jeff Homan, Megan Niner, and Mark Clark

USDA-WS-National Wildlife Research Center, Bismarck, North Dakota

NWRC Avian Repellents Research

- Evaluation and Development
- Application Strategies

Avian Repellents Research

Registered Fungicides:

Allegiance[®] FL Apron XL[®] LS/Maxim[®] 4FS Dividend Extreme[®] FS Endura[®] GWN-4770 Thiram 42-S Tilt[®] EC Trilex[®] FL Quadris[®] Vitavax[®] 200

Registered Insecticides:

Asana XL[®] Baythroid 2[®] Cobalt[™] Endosulfan 3EC[®] Karate[®] with Zeon Technology[™] Lorsban-4E[®] MustangMAX[™]

Scout X-TRA® Warrior T®

Natural Compounds:

Aza-Direct[™] (neem oil)
Caffeine (plus sodium benzoate)
Flock Buster (lemon grass oil, garlic oil, clove oil, peppermint oil, rosemary oil, thyme oil, white pepper)
Gander Gone (citrus terpenes)
9, 10 Anthraquinone[™] (Seed treatment and Foliar formulations; a.i. 50% 9-10 anthraquinone)
Bird Shield [™], Avian Control [™] (a.i., methyl anthranilate)

- Cage Experiments
 - single birds
- Enclosure Experiments
 - known number of birds
- Field Experiments
 - variable numbers of birds

Avian Repellents Research- cages

Lab Efficacy Testing

Preference Testing 10-12 birds 4-day choice test untreated versus treated food

Concentration-response Testing 50-60 birds, 5-6 groups 4-day pretreatment & test 5-6 concentrations tested

NWRC Outdoor Animal Research Facility

Fort Collins, CO

Primary Repellents

•Methyl Anthranilate –

- Irritates the peripheral chemical
- Do not require learning

Unpalatable taste, odor, or irritating Derived from natural products (grapes) Degrades rapidly

Avian Control Field Study (4.7 l/ha)

Grower Perception

 Grower opinion on efficacy ranged from excellent to marginal.
 The application seemed to work best when bird numbers were relatively small.

AC Manufacturer Recommendations *

- 1st application -36 oz/ac ~\$15/acre
- 2nd application 24 oz/ac ~\$10/acre
 ✓Optional
 - >3rd application 24 oz/ac

*\$54.00/gal

Avian Repellents Research- Enclosures

Secondary Repellent

- Negative post-ingestion effects
- Learned avoidance

Secondary Repellents

- Anthraquinone Current Use
 - Seed treatment bird repellent
- Section 24 C
 - Section 3 pending
- Turf
 - Flight Control

Anthraquinone lab efficacy- RWBL

AQ Enclosure Studies

Grackles (18 l/ha)

Redwings 4.7 l/ha & 9.4 l/ha

Back of the Head AQ Study

AQ Field Study - Aerial Application

Aerial Application of AQ

Damage in AQ-treated (9.4 I/ha) and Untreated Field Strips

AQ Field Study - Ground Application

AQ Field Study - Ground Application

Damage/Head in AQ-treated and Untreated Plots

Damage/Head in AQ-treated and Untreated Plots

T = Treated: 18.7 l/ha R = Reference

Future AQ Research

- 2013
 - Enclosure study
 Ground Application
 - **O Better control of spray**
 - ~R1-R3 Stage
 - > 1 ½ gal/ac (14.0 l/ha)

Other AQ Research

AQ Foliar Application
 New Initiative
 South Dakota State Univ.
 Canada Geese
 Soybean sprouts

Recommendation

Avoid experimental studies

 Large variances at field-level
 Habitat differs among fields
 Bird numbers differ
 Influx of naïve birds

 Let 'the market' decide

End Game

- Desiccants
- Frightening Devices
- Short Sunflowers

- Cattail Roost Management
- Chemical Repellents
- Conservation Food Plots
 - Perennial Sunflower

Literature

Linz, G.M., Homan, H.J., Werner, S.J., Hagy, H.H. and Bleier, W.J. 2011. Assessment of birdmanagement strategies to protect sunflowers. BioScience 61: 960– 970.

Acknowledgments

- Turtle Lake Sunflower Growers
- National Sunflower Association
- Avian Enterprises, LLC
- Arkion Life Science, LLC
- North Dakota State University
- Farmers Union Sprayers
- Sprayers, Inc
- NWRC Fort Collins

Thank You!

Wildlife Services
NUMPERC
National Wildlife Research Center