

Development of Insect Resistant Sunflowers: Updates and Challenges

Anitha Chirumamilla¹, Larry Charlet², Brent Hulke², Janet Knodel¹

¹North Dakota State University ²ARS, NCSL, USDA

Overview

□Updates on projects –

- Screening new crosses, S1s, and accessions for stem and head infesting insects
- Studies on resistance mechanisms

Challenges encountered

Host Plant Resistance for Sunflower Stem Weevil -2009

Procedures

Research plots were established at Colby, KS (Dr. Rob Aiken)

57 new crosses and 17 accessions were screened for stem weevil larvae

Each line is replicated two times

≻5 stalks/row were harvested (18" from ground along with roots) in the month of October and shipped to NCSL, Fargo for evaluation

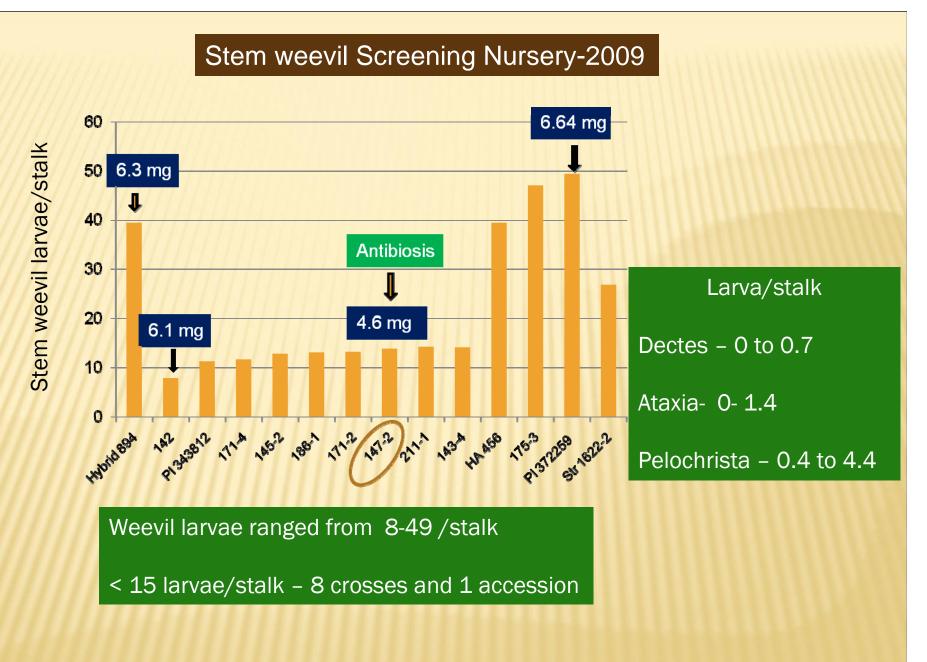
Each stalk is split in the middle and half-stalk was evaluated for stem weevil, other stem infesting insects (Dectes and Ataxia)and root moth Pelochrista)

Degree of resistance is measured by comparing the larval numbers to the check Hybrid-894 and the sunflower lines with lowest number of larvae using stem diameter as a covariate.

Insects Infesting Sunflower Stalk or Root crown

Stem Weevil

Dectes Stem Borer



Root Moth

Ataxia Stem Borer

Colby, KS

Screening for Sunflower Moth Resistance- 2009

>Experimental plots laid out in Colby Research Station, KS.

≻55 new crosses; 57 S1s and 16 accessions were tested

➤2 replications except for S1s

>5 heads/row were bagged at R7 to protect from bird damage

Harvested heads were shipped to Fargo, ND for evaluation

Each head is threshed and evaluated for percent seed damage out of 100 seeds

Screening for Sunflower Moth Resistance-2009

55 new Crosses

Seed Damage – 14 to 71%

2 crosses - < 20% damage

57 S1s % Seed damage – 2 to 70% 9 S1s - < 10% damage 23 S1s - < 20% damage

16 accessions

% seed damage- 6 to 86% 2 accessions - < 10% damage 6 accessions - <20% damage PI 170386, PI170428, PI 195946, PI 343785, and PI 650558 - < 20% damage in 2008 and 2009

Sunflower Moth Visual Damage Rating – Scale 0 - 4

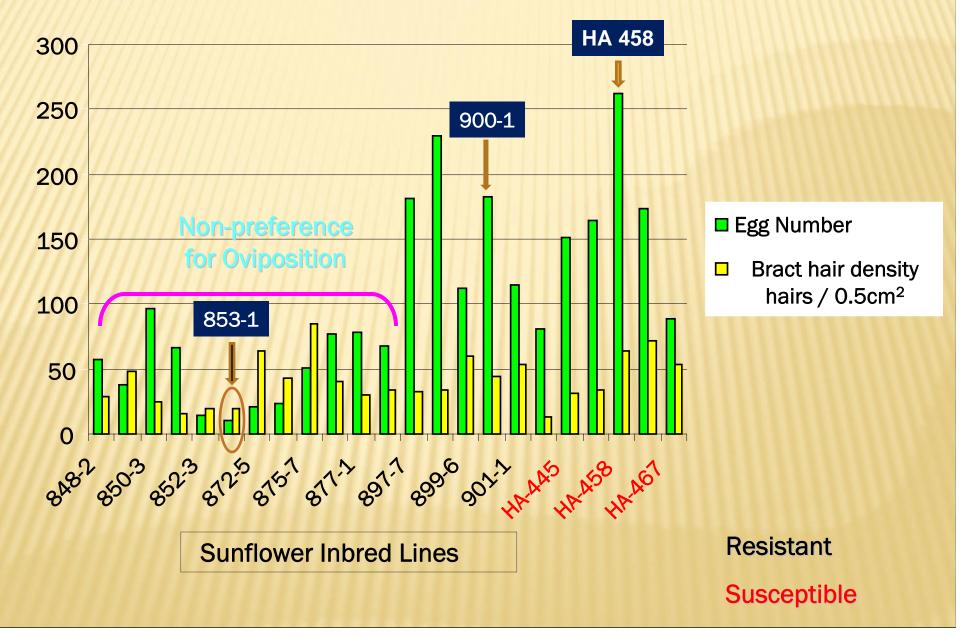
Rating 1 - (1-25% damage)

Rating 3 - (51-75% damage)

Rating 2 - (26-50% damage)

Rating 4 - (76-100% damage)

Seed Weevil Nursery-2009



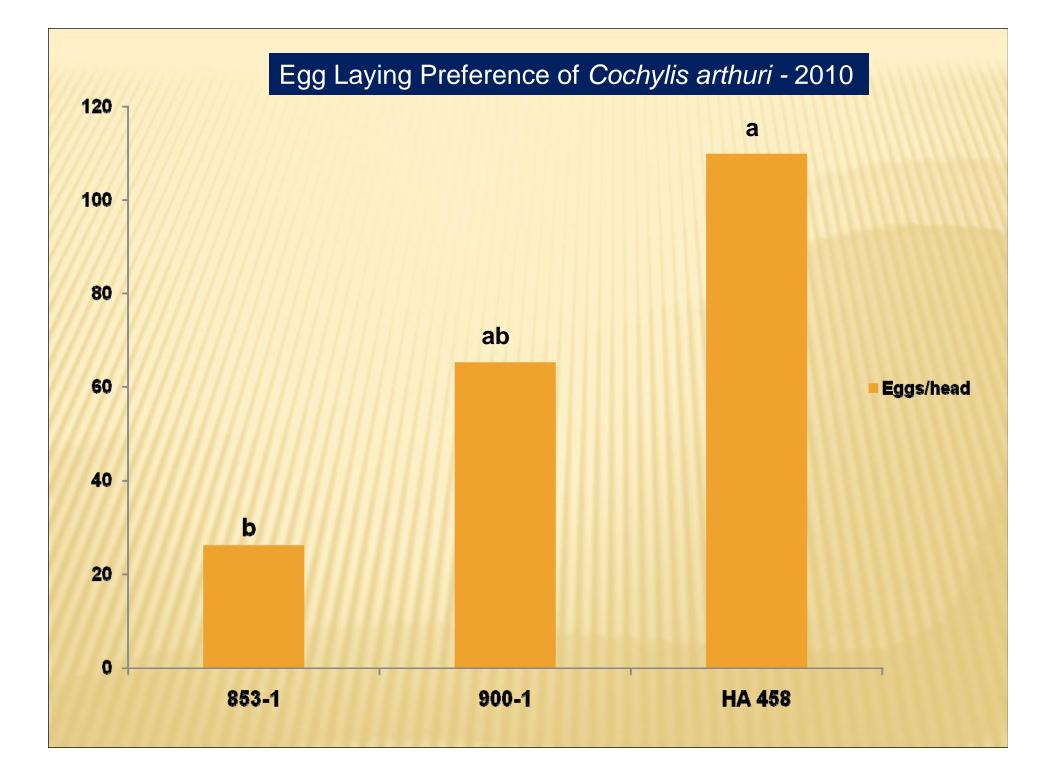
Nursery lost to hail damage

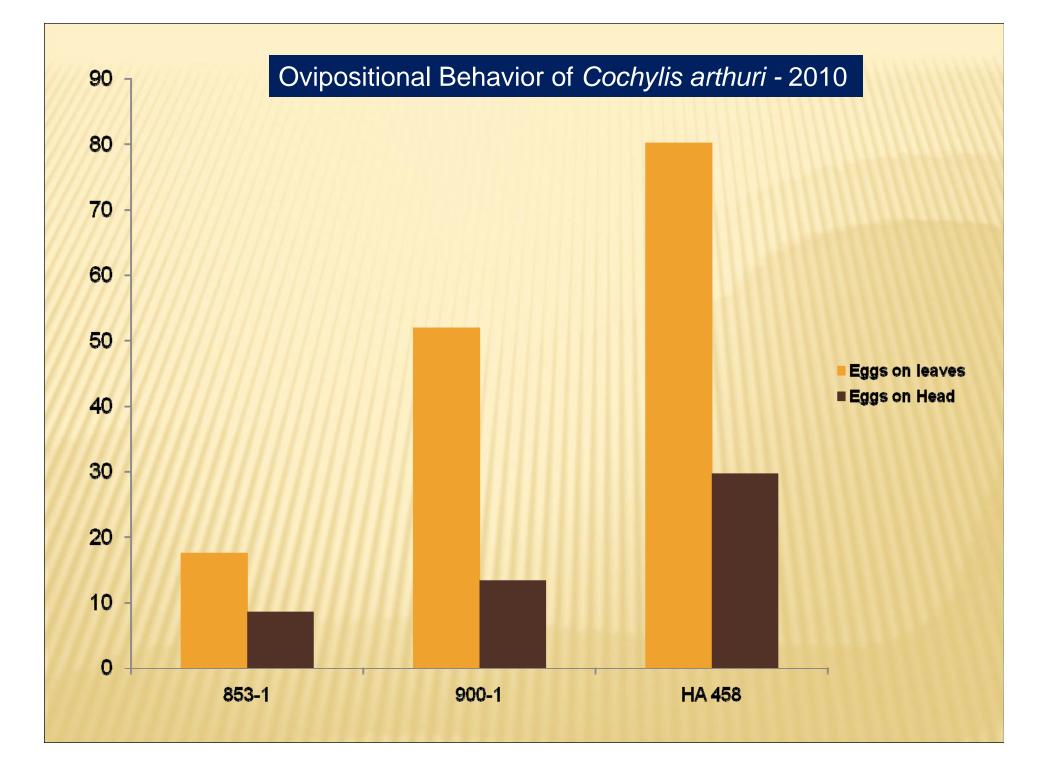
Resistance Mechanisms for BSM-Greenhouse Study 2009 Effect of Bract hair density on BSM oviposition

ac1

ac1 The aim of this study was to investigate if there is an effect of bract hairiness on the ovipositional preference of banded sunflower moth. Most of the resistant lines had considerably low egg numbers when compared to the susceptible lines showing that the mechanism of resistance is antixenosis-ovipisitional non-preference. Anitha Chirumamilla, 6/18/2009

Cochylis hospes Walsingham


Cochylis arthuri Dang



Pale straw colored moth	>White grayish moth		
Triangular dark brown band In the middle of fore wing	Fore wings crossed by broken brown and gray transverse median band		
Hind wing grayish black	➤White or gray		

Absolutely cannot differentiate larvae with naked eye

	Field Study for Mechanisms of Resistance to BSM									
//	Accession	ession 2005		2006		2008				
		*Eggs (LS Mean)	Larva	*% seed damage (LS Mean)	Eggs	Larva	% seed damage	Eggs	Larva	*% seed damage (LS Mean)
/	PI 494859	119.3 a	25.1 b	22.2 bc	49.8 a	34.7 b	18.0 b	212.2 a	68.1 b	35.2 c
(PI 170385	63.8b	19.5 b	18.3 c	13.1 b	28.5 b	24.7 b	-	-	-
1	PI 291403	63.0b	18.8 b	25.2 abc	13.0 b	58.1 b	28.9 b	-	-	-
1	PI 497939	53.8b	19.0 b	39.9 a	64.0 a	21.1 b	20.1 b	65.1 c	70.8 b	71.0 a
	PI 251902	-	-	-	23.1 b	63.8 b	20.1 b	104.2 bc	116.1 b	43.4 bc
	PI 175728	-	-	-	-	-	-	142.0 b	117.5 b	52.9 b
	Par 1673-2	57.6b	66.4 a	37.4 ab	75.3 a	125.6 a	46.7 a	96.3 bc	175.3 a	78.8 a

_

Prosper, ND

Field Study for Mechanisms of Resistance to BSM

	Larval wt. (mg)				
Accession	2005	2006	2008		
PI 494859	9.0 ± 0.2 cd	$8.6\pm0.2~\text{bc}$	$8.5\pm0.2~\text{c}$		
PI 170385	10.3 ± 0.3 a	10.2 ± 0.3 a	-		
PI 291403	9.8 ± 0.3 ab	$9.0\pm0.3~\text{b}$	-		
PI 497939	9.4 ± 0.5 bc	$8.2\pm0.3~\text{c}$	$9.4\pm0.2~\text{b}$		
PI 251902	-	$9.0\pm0.2~\text{b}$	9.9 ± 0.2 a		
PI 175728	-	-	$9.0\pm0.2~\text{bc}$		
Par 1673-2	$8.3\pm0.2~d$	$8.9\pm0.2\ bc$	$8.7\pm0.2~\text{c}$		

Prosper, ND

Field Study for Mechanisms of Resistance to BSM

	% Parasitism				
Accession	2005	2006	2008		
PI 494859	43.6 ± 4.8 a	56.1± 5.3 a	55.7±5.3 a (0.86)		
PI 170385	$42.5\pm6.0~a$	40.3 ± 3.2 a	-		
PI 291403	$44.8\pm5.2~a$	$46.4\pm6.0~a$	-		
PI 497939	31.9 ± 5.1 a	50.3 ± 5.1 a	37.4±3.3 b (0.66)		
PI 251902	-	50.4 ± 4.5 a	47.3±2.2 ab (0.76)		
PI 175728	-	-	55.0±3.7 a (0.83)		
Par 1673-2	41.7 ± 2.8 a	41.3 ± 3.3 a	35.4±3.4 b (0.64)		

Prosper, ND

Challenges

Nature

- ✓Natural calamities like hail and high wind storms
- ✓Low insect pressure
- ✓ Bird damage

Cost / Technique

Time and labor intensive process to evaluate seeds and stalks

Lack of in-field evaluation procedures or mechanical techniques

✓ Dependence on field populations of insects for conducting greenhouse experiments

 Difficulty in maintaining laboratory populations of insects to conduct in-lab experiments

Future Line of Research

Detailed studies on the chemical volatiles of sunflower lines that appeared to be antixenotic (oviposition) to BSM in our greenhouse choice studies

Nutritional and physiological studies to confirm and investigate the antibiosis phenomenon for BSM in the accession PI 494859

Greenhouse choice tests for stem weevil and sunflower moth resistance mechanisms

Acknowledgements

National Sunflower Association – Funding the Project

Theresa Gross – Technical Expertise

Patrick Beauzay - Plantings

Student helpers- Ashley, Scott, John, and Akhilesh Chandra