PRELIMINARY STUDIES ON THE VEGETATIVE COMPATIBILITY GROUPS OF VERTICILLIUM ON SUNFLOWER

Kholoud Alananbeh¹, Neil Gudmestad¹, Tom Gulya², and Sam Markell¹

¹North Dakota State University and ²USDA-ARS, Fargo, ND

OUTLINE

- Introduction
- Objectives
 - * VCG determination
- Methods
 - * Isolates
 - * PCR
 - * AFLP
- Preliminary Results
 - * VCG's
- Summary
- Future work
 - * Aggressiveness and SCAR markers

Introduction

- V. dahliae: cosmopolitan, soil pathogen fungus.
- □ > 200 host species worldwide
- Losses: in US, lettuce (100%), potato (50%), sunflower (30%).
- Sunflower: reduced head and seed size, oil content and yield.
- Produce microsclerotia, a survival structures persist for years.

Intro: symptoms

Intro: symptoms

Sunflower stalks split open to show the range of Verticillium symptoms on pith at the end of the season (late October in south central ND).

Slide obtained from Dr. Gulya, T. 2010 in SD, ND.

Intro.: resistance to V. dahliae

- V-1 gene ~ effective for 20 yrs (North America)
- Vd strains not controlled by V-1 in 1985 (Argentina), 2002 (MN), and 2004 (ND)

Intro.: genetic diversity of V. dahliae

- No sexual stage that allows recombination of genes
- Vegetative compatibility grouping (VCG)
- Vd VCGs: VCG1, VCG2 (A,B), VCG3, VCG4 (A,B), and VCG6.
- On sunflower, VCGs of *V. dahliae* isolates have not been determined on wide scale for populations study (continental & inter-continental)

Objectives

- Determine the VCG(s) of V. dahliae on Sunflower
 - * PCR's
 - * AFLP method
 - * Simple sequence repeats (SSR)

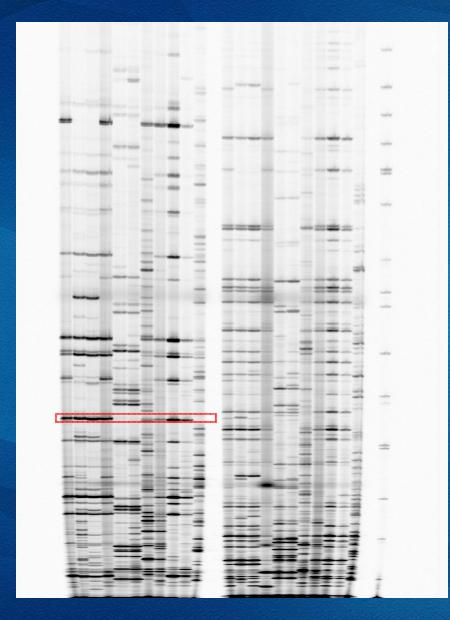
- Aggressiveness of VCGs on sunflower
- SCAR marker for *V. dahliae* to assess a pathogen in plants

Methods: isolates

Country	# of isolates	Hosts
Testers	30	Different hosts
Multiple countries	12	?
Canada	23	Potato sunflower
Spain	3	?
Argentina	10	?
Australia	10	?
South Africa	2	?
USA	407	Sunflower, others
ND	350	Sunflower
SD	14	Sunflower
MN	13	Sunflower
TX	13	Sunflower
IN	2	Sunflower
NE	14	Sunflower
WI	1	Potato
Total	497	

Methods: PCR

Primer pair	Amplicon	Reference
VertBtF/R	115	Atallah et al., 2007
DB19/22	526 or 543	Carder et al., 1994
INTD2F/2R	462	Mercado-Blanco et al.,2003
NDF/R	1410	Perez-Artez et al., 2000
INTND2F/2R	824	Mercado-Blanco et al.,2003
DB19/espdef01	334	Collins et al., 2005
INTND2F/3R	688	Collado-Romero et al., 2008
INTND2F/MCR2B	964	Collado-Romero et al., 2008


Our Study

Collado-Romero et al.(2006)

PCR Pattern	334	824	462
A	+	_	+
В	+		-
C		+	-
None amplified	-		-
D	+	+	-

Collado-Romero et al.(2006) Our Study

Methods: AFLP

- Manually scoring: Present (1) or absent (0).
- Number of bands scored/primer/isolate:

EcoRI-AG/MseI-C: 113

EcoRI-AT/MseI-C: 134

EcoRI-GA/MseI-C: 97

EcoRI-GC/MseI-C: 156

- Collado-Romero et al., 2006
- •DNA sequencer: Li-COR
- WINBOOT software was used for clustering analysis.

	+100.0 +78.2 +
	+-69.2 +Vd1399-21
	+
	+-36.9
	+35.9
	+-70.2 +Le-705
	82.8 +90-1133
	+
	+Vd1-Spain
	1 +96.2
	+36.5 +100.0 +-35.9 +Vs08-08 +Vs08-07
	1 1 +-89.7 1
	+-66.7 +05-20-TG +05-12-TG
	73.1 +-97.4 1299-1
	+100.0 1 -78.2 -718-1
	73.1 +719-1 +1299-2
	+61.3 +Ve06-11
	+80-1140 +100.0
	+-61.3 1 1 +
	98.7 +-64.1
	60.3 So-1134
) ,	74.4 94.9 1 + 96.7 + ∨3021
	+-61.5
	+-93.6 +-93.6 +
1	-39.7
	+100.0 +BBrittM
1	+V609I V6411
1	+100.0 +
	47.4 +
İ	+-33.3
+-20	
ÎÎ	5 +94.9 +28.2
11	+-35.9 +V44nRM
11	+
	1 +100.0
+-16.7 I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
111	+70-21 nit-1
.1.1.1	+
1111	· · · · · · · · · · · · · · · · · · ·
√559I +-44.9 +-	
14.9 *	V208-03
1	

T

1

<u>Host</u>	PCR pattern	VCG
Potato	D	4A
		4B
Lettuce and Spinach	C, D	2A
Sunflower	В	2A
Amur maple	В	2A
Lettuce and spinach	C, D	2A
Testers		Multiple VCGs
Outliers	В	

Conclusions

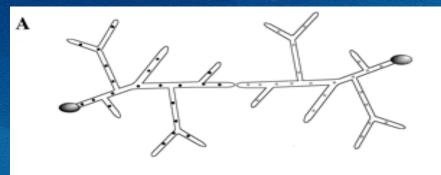
- Primary results indicate that *Verticillium* on sunflower is belonging to VCG-2A.
 - Host adaptation
 - Aggressiveness: effective breeding
 - International migration of Verticillium
- Results are consistent with Collado-Romero et al. (2006) in their isolate clustering and PCR pattern.

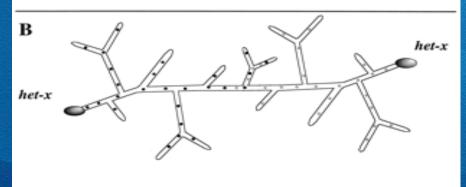
Future work

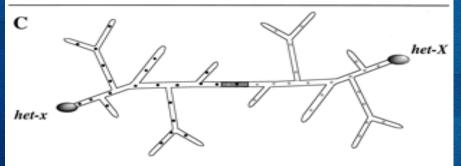
- Determine VCG of *V. dahliae* isolates (4 month).
- Aggressiveness (4 months)
- Collect isolates from Argentina to compare populations with North America (June 2011).
- Run SSR markers for all *V. dahliae* samples (4 months).
- Design SCAR primers for the different VCG's (3 months).

Acknowledgments

- National Sunflower Association
- All persons who provided *V. dahliae* isolates




Summary of fungi recovered from culturing sunflower stalks on three different media, PDA, CV8, and PYLA since September to November 2010


Fungus ^a	% Fields	% Stalks
Phomopsis	57	22
Phoma	18	<u>-</u>
Downy Mildew	5	- L
Charcol rot	8.4	3.4
V. dahliae	25.8	19.5
Fusarium	62	44.5
Rust	12	-
Rhizopus	0.6	- /
Sclerotinia	3.2	-/
Colletotrichum	3.2	1.4
Insect	8.4	-
Acremonium	7	3.5
Total fields	155	
Total stalks	1146	

Vegetative Compatibility Groups

■ What is vegetative compatibility?

- (A) When two different fungal individuals meet, they spontaneously undergo a cell fusion event or anastomosis.
- (B) If the two individuals have the same *het* genotype, a heterokaryon is established.
- (C) If the two strains differ in *het* genotype, the heterokaryotic cells are destroyed or severely inhibited in their growth

(Saupe et al. 2000. Microbiology and Molecular Biology Reviews 64:489-502)