

New sunflower rust projects in the USDA Sunflower Research Unit

Lili Qi, Tom Gulya, Brent Hulke, Brady Vick USDA-ARS Sunflower Unit

Rust is becoming a serious threat to the sunflower industry in North America

- Sunflower rust appeared earlier than normal in the field
- Rust incidence has continued to increase from 17% in 2002 to over 70% of fields affected in the last two years
- New rust races have arisen to which current hybrids have little resistance

Ongoing rust projects

- Evaluation of rust resistance to virulent races of USDA-released breeding lines
- Transfer of rust resistance genes from oil sunflower to confection sunflower
- Molecular mapping of rust resistance genes

Evaluation of resistance to virulent races of USDA released breeding lines

A total of 106 lines that previously reported resistance to one or more pathotypes of sunflower rust were selected

- 66 inbred lines
 - 9 oil-B lines
 - 26 oil-R lines
 - 28 confection-B lines
 - 3 confection-R lines
- 14 introgression lines
- 26 introduced lines from Canada, Australia, and Argentina

Selected rust races

- Race 336 more prevalent race
- Race 777 more virulent race

Sunflower lines resistant to race 336 or 777

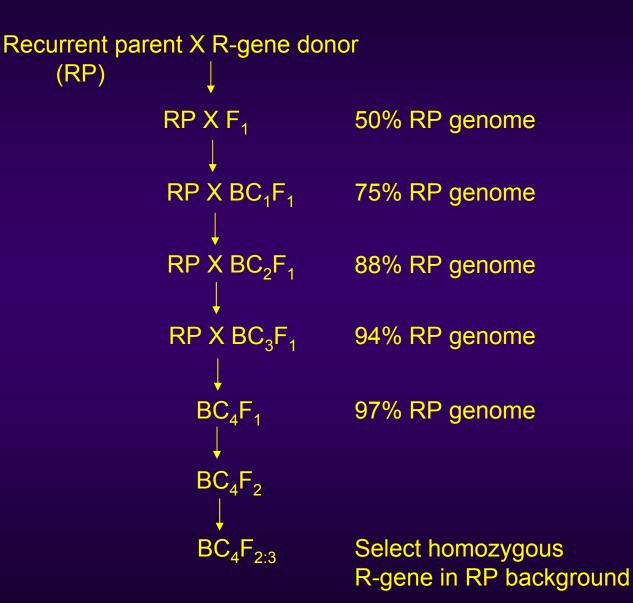
	Туре	Reaction to		Putative rust
Sunflower line		race 336	race 777	gene (s)
Inbred lines (6/66)				
Susc. check		S	S	
HA-R2	OB	R	S	R 5
HA-R3	OB	R	MR	R_4
HA-R6	СВ	R	R	
HA-R8	CR	R	R	
RHA 397	OR	R	R	
RHA 464	OR	R	R	
Introgression lines (6/14)				
Ph3		R	R	R_{4m}
Ph4*		R	R	
Ph5*		R	R	
Ph6*		R	S	R 40
TX16R*		R	R	
Rf ANN-1742*		R	R	
Introduced lines (7/26)				
СМ29		R	S	$R_2 + R_{10}$
Suncross 53 self		R	MR	R_{4u}
Hysun 36 self		R	R	
Hysun 37 self		R	R	
Hysun 47self		R	R	
PI497938		R	S	
PI650362		R	R	

OB: oil-B line; OR: oil-R line; CB: confection-B line; CR: confection-R line. *Resistance segregation

Transfer of rust resistance genes from oil sunflower to confection sunflower

Selected recurrent confection parents

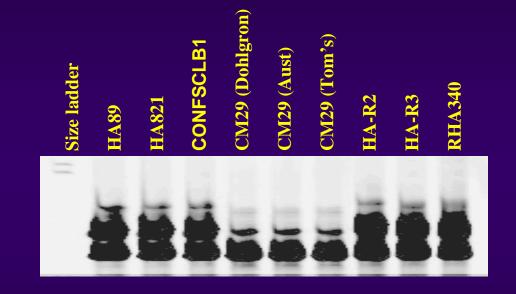
- CONFSCLB1, a B-line released in 2006


- CONFSCLR5, a R-line released in 2006

Selected rust resistance genes

- R₂ gene in CM29, resistant to 90% of isolates
- R₄ gene in HA-R3, resistant to 86% of isolates
- R₅ gene in HA-R2, resistant to 88% of isolates

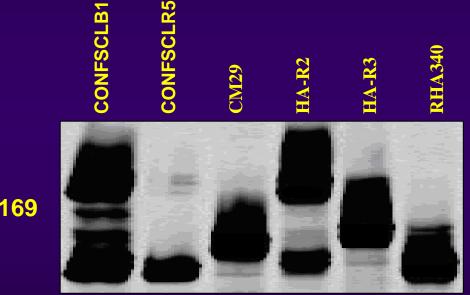
Traditional backcross-based gene introgression



Marker-assisted background selection (MABS)-based gene introgression

Molecular markers linked to known R-gene will be used to target rust resistance gene in progeny

Resistance source	Resistance gene	Marker	Linkage (cM)	Linkage group	Reference
CM29	R ₂	ORS333	0.0	9	Jan, personal communication
HA-R2	R ₅	ORS630	0.0	13	Sendall et al. 2006
HA-R3	R ₄	-	-	-	


SSR marker ORS333 linked to R₂ gene in CM29

Selection of molecular markers for RP genome

 Screen polymorphism between recurrent parent and R-gene donor parent with SSR markers

ORS169

 Polymorphic markers for RP genome will be used for marker-assisted background selection

Scheme of MABS-based gene introgression

Recurrent parent X R-gene donor parent (RP)

RP X F₁

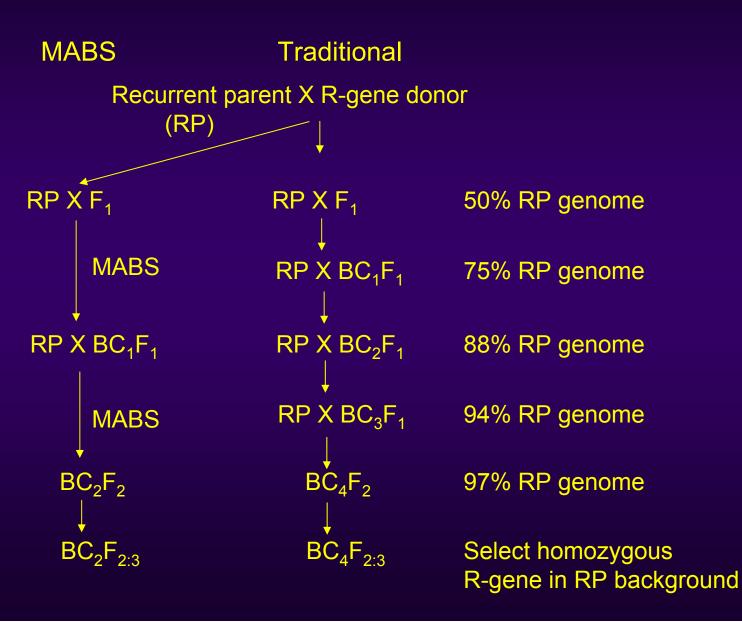
1st Backcross

- Screening of 500-1,000 BC₁F₁ for rust resistance.
- The selected resistant plants will be genotyped with the R-gene carrier chromosome markers.
- Plants with most RP background in the carrier chromosome will be used to make BC₂F₁

RP X BC₁F₁ 2nd Backcross

- Screening of 500-1,000 BC_2F_1 for rust resistance.
- The selected resistant plants will be genotyped with the R-gene carrier chromosome markers.
- Selected plants will be genotyped with RP makers.
- Plants with most PR loci will be selected and selfed.

BC₂F₂


 $BC_2F_{2\cdot 3}$

Selfing

Select homozygous R-gene in RP background

Comparison of MABS and traditional gene introgression

Progress of the project

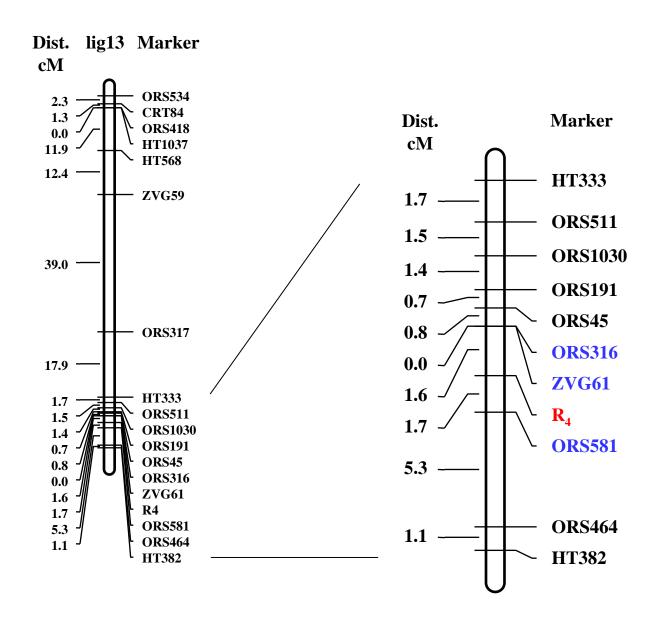
Crosses were made

- (CONFSCLB1 X CM29) F₁
- (CONFSCLB1 X HA-R2) F₁
- (CONFSCLR5 X HA-R3) F₁

 F_1 hybrids were tested with the rust race 336 and backcross is underway

	No. plants	Race 336		
Materials		IT	Severity (%)	
Susc. check 7350	6	4	20	
CONFSCLB1	6	4	20	
CONFSCLR5	6	4	20	
CM29	8	1	0	
HA-R2	8	1	0.1	
HA-R3	8	1	0.1	
(CONFCLB1 X CM29) F ₁	12		0.5	
(CONFCLB1 X HA-R2) F ₁	12		2-5	
(CONFCLR5 X HA-R3) F ₁	16		1-2	

IT: infection type; 0-2, resistance, 3-4 susceptible. Severity: the percent leaf area affected by rust; 0-0.5%, resistance, >1%, susceptible.


Molecular mapping of rust resistance genes

- Pyramiding of two or more effective resistance genes into one cultivar may provide a more durable resistance.
- The selection of genotypes with gene combinations is often not possible using resistance tests.
- Marker-assisted selection is a powerful approach for pyramiding non-allelic rust resistance genes in sunflower.
- Only a few molecular markers are available for sunflower rust resistance genes.

Mapping of rust gene R₄ in HA-R3

- Molecular marker source
 - 1,700 SSR primers are available
 - 870 have known positions in linkage map
 - 830 unmapped
- Screened 544 SSR primers between HA89 and HA-R3 and about 40% of the primers amplified polymorphic fragments in two parents.
- Twenty-two polymorphic SSR markers mapped to linkage 13 were first used to screen 94 plants of a F₂ population from the cross HA89 with HA-R3.
- 120 F_2 and 1900 F_3 plants from 94 $F_{2:3}$ families were tested with rust race 336.

Future plan

Mapping of new rust resistance genes in RHA397 and RHA464

- RHA397 and RHA464 resist both rust races 336 and 777. RHA464 also resists downy mildew new race 734.
- The rust resistance in RHA397 may originate from a germplasm originating in South Africa
- The rust resistance in RHA464 was derived from a wild *H. annuus* accession PI 413047.

Acknowledgment

Angelia Hogness Megan Townsend Amanda Schoch Hannah Worral