Observations on Sunflower Rust in Nebraska and Management Efforts with Fungicide Application Timings

> Robert M. Harveson Extension Plant Pathologist University of Nebraska Panhandle REC, Scottsbluff

Rust in Nebraska

- Sunflower rust, caused by the obligate fungal pathogen *Puccinia helianthi*
- Rust is present to some extent each year in Nebraska both cultivated and wild sunflowers
- In commercial production it often occurs late enough in the season that yields are not affected and treatment is not considered to be necessary - can cause significant losses on susceptible hybrids under conducive conditions

Spore Stages

- Pathogen has a complex life cycle consisting of 5 distinct spore stages – all of which occur on sunflower:
 - Uredial
 - reddish-brown (rust) colored and the most commonly observed stage
 - Also the most damaging can have multiple cycles during the season
 - Telial overwintering stage

Spore Stages

- In early spring, teliospores germinate to produce basidiospores which can re-infect sunflowers
- Flask-shaped pycnia are formed on the upper leaf surface
- Aecia develop from the pycnia usually on the lower leaf surface directly below the pycnia
- Aeciospores, formed in developing aecia, then re-infect sunflowers to create new uredia – completing the life cycle

Pathogen Life Cycle

Uredia change to telia with cooler temperatures

Overwinters as teliospores

Basidiospores infect sunflowers and form pycnia

Aeciospores re-infect sunflowers creating new uredia

Aecia develop from the pycnia

Pathogen Life Cycle

Uredia change to telia with cooler temperatures

Overwinters as teliospores

Basidiospores infect sunflowers and form pycnia

Early Spore Stages

Aeciospores re-infect sunflowers creating new uredia

Aecia develop from the pycnia

Rust Survey in 2009

- Temperatures during April, May, and early June were 6°F cooler with 5.5 inches higher rainfall than the 30 year average
- First pycnia and aecia observed in late May
- A survey of western Nebraska conducted over the next four weeks – on volunteers from 2008 production fields (>50 fields/locations)
- Early spore stages found in 44 (85%) of surveyed sites

Early Spore Stages

Fungicide Evaluations - Methods

- Two distinct studies conducted:
 - Fungicide evaluations (testing 5 products)
 - Control, Proline (5.7 oz), Prosaro (6.5 oz), Tebuzol (4.0 oz), Headline (9.0 oz), and Quadris (9.0 0z)
 - Fungicide application timings
 - Control
 - Headline (R1, R4, and R6)
 - Tebuzol (R1)/Headline (R4)/Tebuzol (R6)
 - Tebuzol (R1, R4, and R6)
 - Tebuzol (R1)/Headline (R4)
 - Headline (R4)/Tebuzol (R6)

Methodology

- Planted 6/21 and 6/22
- Plots four 22 inch rows, 30 ft long with sprinkler irrigation
- Plots inoculated 7/26
- Sprays made at R1 (8/02), R4 (8/20), and R6 (9/03) growth stages
- Ratings made 9/1-9/2 and 9/16-9/17 on upper two leaves from each of ten plants per plot
- Harvested 9/23

Fungicide Evaluations – Field Map

	Border - 5 Iows						
	Plot 15	Plot 20	Plot 21	Plot 22	Plot 23	Plot 24	
B o	6	3	5	1	4	2	B 0
<] ä
e	ΡΙστ 18	Plut 17	Plut 16	Plut 15	Plut 14	Plut 13	e e
r 1	2	5	6	3	1	4	r 1
-	Plot 7	Plot 8	Plot 9	Plot 10	Plot 11	Plot 12	
t e e	5	6	1	4	3	2	t e e
t							1 1
	Plot 6	Plot 5	Plot 4	Plot 3	Plot 2	Plot 1	
	6	5	4	3	2	1	
		•	Border	-4 iows	•	•	

Sunflower Rust Fungicide Evaluations Disease Ratings (2009)

Sunflower Rust Fungicide Evaluations – 2009

Sunflower Rust Fungicide Timing Evaluations – Disease Ratings (2009)

Sunflower Rust Fungicide Timing Evaluations - 2009

Rust Effects on Yield

Rust Effects on Sunflower Yield

Future Studies

- Early stages have rarely been observed
- Survey for early spore stages again in 2010
- Forecasting mechanism for estimating fungicide application timings?
- Further investigate infection and yield loss in relation to time of infection (age of plants)

Uredial pustule Aecial clusters

Thank You – Questions?